Exam 13: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Calculate the direction of P1P2 and the midpoint of line segment P1P2\text { Calculate the direction of } \overrightarrow { P _ { 1 } P _ { 2 } } \text { and the midpoint of line segment } P _ { 1 } P _ { 2 } \text {. } - P1(6,7,4)\mathrm { P } _ { 1 } ( - 6 , - 7,4 ) and P2(5,8,3)\mathrm { P } _ { 2 } ( - 5 , - 8,3 )

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

B

 Find the distance between points P1 and P2\text { Find the distance between points } P _ { 1 } \text { and } P _ { 2 } \text {. } - P1(7,2,5)\mathrm { P } _ { 1 } ( 7 , - 2,5 ) and P2(10,6,0)\mathrm { P } _ { 2 } ( 10 , - 6,0 )

Free
(Multiple Choice)
4.9/5
(41)
Correct Answer:
Verified

C

 Find the distance between points P1 and P2\text { Find the distance between points } P _ { 1 } \text { and } P _ { 2 } \text {. } - P1(7,8,7)P _ { 1 } ( 7,8 , - 7 ) and P2(9,5,13)P _ { 2 } ( 9,5 , - 13 )

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

D

Find the angle between u and v in radians. -u = -4j and v = 5i - 6k

(Multiple Choice)
4.9/5
(31)

Find the indicated vector. -Let u=1,8,v=4,1\mathbf { u } = \langle - 1 , - 8 \rangle , \mathbf { v } = \langle 4 , - 1 \rangle . Find 5u+4v- 5 \mathbf { u } + 4 \mathbf { v } .

(Multiple Choice)
4.7/5
(33)

Find an equation for the sphere with the given center and radius. -Center (0, 0, 10), radius = 8

(Multiple Choice)
4.8/5
(38)

Find v · u. -v = 7i - 5j and u = -3i - 9j

(Multiple Choice)
4.8/5
(30)

Solve the problem. -Find a unit vector perpendicular to plane PQR determined by the points P(2, 1, 3), Q(1, 1, 2) and R(2, 2, 1).

(Multiple Choice)
4.7/5
(30)

Sketch the coordinate axes and then include the vectors A, B, and A × B as vectors starting at the origin. -u = i - j, v = k

(Essay)
4.7/5
(33)

Find parametric equations for the line described below. -The line through the point P( , , 5) parallel to the vector -4i + 3j - 7k

(Multiple Choice)
4.9/5
(26)

Determine whether the following is always true or not always true. Given reasons for your answers. -c(u × v) = cu × cv (any number c)

(Essay)
4.8/5
(34)

 Use the vectors u,v,w, and z head to tail as needed to sketch the indicated vector. \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. } \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. }     - \mathbf { V } = \mathbf { W }     - V=W\mathbf { V } = \mathbf { W } \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. }     - \mathbf { V } = \mathbf { W }

(Multiple Choice)
4.7/5
(37)

Describe the given set of points with a single equation or with a pair of equations. -The set of points equidistant from the points (0, 0, -6) and (0, 0, 4)

(Multiple Choice)
4.9/5
(33)

Provide an appropriate response. -The unit vectors u\mathbf { u } and v\mathbf { v } are combined to produce two new vectors a=u+v\mathbf { a } = \mathbf { u } + \mathbf { v } and b=uv\mathbf { b } = \mathbf { u } - \mathbf { v } . Show that a\mathbf { a } and b\mathbf { b } are orthogonal. Assume uv\mathbf { u } \neq \mathbf { v } .

(Essay)
4.9/5
(41)

Find the indicated vector. -Let u=1,9,v=1,3\mathbf { u } = \langle - 1 , - 9 \rangle , \mathbf { v } = \langle 1 , - 3 \rangle . Find uv\mathbf { u } - \mathbf { v } .

(Multiple Choice)
4.7/5
(44)

Calculate the requested distance. -The distance from the point S(3, 2, -6) to the line x = -6 + 2t, y = 9 + 2t, z = -8 + 2t

(Multiple Choice)
4.9/5
(46)

Find the vector projv u. -v = k, u = 9i + 2j + 6k

(Multiple Choice)
4.7/5
(36)

Give a geometric description of the set of points whose coordinates satisfy the given conditions. - y2+z2=16,x=5\mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } = 16 , \mathrm { x } = - 5

(Multiple Choice)
4.8/5
(35)

 Use the vectors u,v,w, and z head to tail as needed to sketch the indicated vector. \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. } \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. }     - 3 w     - 3w3 w \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. }     - 3 w

(Multiple Choice)
4.7/5
(37)

Determine whether the following is always true or not always true. Given reasons for your answers. -(u × v) ·v = 0

(Short Answer)
4.8/5
(42)
Showing 1 - 20 of 229
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)