Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Consider a fluid with a flow field F=x5y4i+9z2j+zk\mathbf { F } = \mathrm { x } ^ { 5 } \mathrm { y } ^ { 4 } \mathbf { i } + 9 \mathrm { z } ^ { 2 } \mathbf { j } + \mathrm { z } \mathbf { k } . A miniature paddlewheel (idealized) is to be inserted into the flow at the point (1,1,1)( 1,1,1 ) . Find a vector describing the orientation of the paddlewheel axis which produces the maximum rotational speed.

Free
(Essay)
4.9/5
(36)
Correct Answer:
Verified

The paddlewheel axis points along the vector r = -18i - 4k.

Calculate the circulation of the field F around the closed curve C. - F=xyy2i+x2yj;\mathbf { F } = x y y ^ { 2 } \mathbf { i } + x ^ { 2 } y \mathbf { j } ; curve CC is the counterclockwise path around C1C2:C1:r(t)6costi+6sintj,0tπC _ { 1 } \cup C _ { 2 } : C _ { 1 } : r ( t ) 6 \cos t i + 6 \sin t j , 0 \leq t \leq \pi C2:r(t)=ti,6t6C _ { 2 } : r ( t ) = t i , - 6 \leq t \leq 6

Free
(Multiple Choice)
4.9/5
(40)
Correct Answer:
Verified

C

Evaluate the line integral along the curve C. - C(y+z)ds,C\int _ { C } ( y + z ) d s , C is the path from (0,0,0)( 0,0,0 ) to (6,6,1)( 6 , - 6,1 ) given by: C1:r(t)=6t2i6tj,0t1C _ { 1 } : r ( t ) = 6 t ^ { 2 } i - 6 t j , 0 \leq t \leq 1 C2:r(t)=6i6j+(t1)k,1t2C _ { 2 } : \mathbf { r } ( \mathrm { t } ) = 6 \mathbf { i } - 6 \mathbf { j } + ( t - 1 ) \mathbf { k } , 1 \leq \mathrm { t } \leq 2

Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
Verified

D

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Sketch the vector field in the plane along with its horizontal and vertical components at a representative assortment of points on the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 . -F = -xi - yj

(Short Answer)
4.8/5
(40)

Find the flux of the curl of field F through the shell S. - F=5x2yi+5xy2j+z5k\mathrm { F } = - 5 \mathrm { x } ^ { 2 } \mathrm { yi } + 5 \mathrm { xy } ^2 \mathbf { j } + \mathrm { z } ^ { 5 } \mathbf { k } ; S\mathrm { S } is the portion of the paraboloid 2x2y2=z2 - \mathrm { x } ^ { 2 } - \mathrm { y } ^ { 2 } = \mathrm { z } that lies above the xyx y - plane

(Multiple Choice)
4.8/5
(29)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. - F=(yeycosx)i+(yeysinx)j;C\mathbf { F } = \left( - \mathrm { y } - \mathrm { e } ^ { \mathrm { y } } \cos \mathrm { x } \right) \mathbf { i } + \left( \mathrm { y } - \mathrm { e } ^ { \mathrm { y } } \sin \mathrm { x } \right) \mathrm { j } ; \mathrm { C } is the right lobe of the lemniscate r2=cos2θ\mathrm { r } ^ { 2 } = \cos 2 \theta that lies in the first quadrant.

(Multiple Choice)
4.7/5
(34)

Find the gradient field of the function. - f(x,y,z)=x5e7x+y3z7\mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = \mathrm { x } ^ { 5 } \mathrm { e } ^ { 7 \mathrm { x } } + \mathrm { y } ^ { 3 } \mathrm { z } ^ { 7 }

(Multiple Choice)
4.9/5
(37)

Find the potential function f for the field F. - F=8x7y9z3i+9x8y8z3j+3x8y9z2k\mathrm { F } = 8 \mathrm { x } ^ { 7 } \mathrm { y } ^ { 9 } \mathrm { z } ^ { 3 } \mathbf { i } + 9 \mathrm { x } ^ { 8 } \mathrm { y } ^ { 8 } \mathrm { z } ^ { 3 } \mathbf { j } + 3 \mathrm { x } ^ { 8 } \mathrm { y } ^ { 9 } \mathrm { z } ^ { 2 } \mathbf { k }

(Multiple Choice)
4.8/5
(34)

Using Green's Theorem, find the outward flux of F across the closed curve C. - F=(x2+y2)i+(xy)j;C is the rectangle with vertices at (0,0),(8,0),(8,10), and (0,8)\mathbf { F } = \left( \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } \right) \mathbf { i } + ( \mathrm { x } - \mathrm { y } ) \mathbf { j } ; C \text { is the rectangle with vertices at } ( 0,0 ) , ( 8,0 ) , ( 8,10 ) , \text { and } ( 0,8 )

(Multiple Choice)
4.8/5
(39)

Evaluate the work done between point 1 and point 2 for the conservative field F. - F=(y+z)i+xj+xk;P1(0,0,0),P2(1,4,7)\mathbf { F } = ( \mathrm { y } + \mathrm { z } ) \mathbf { i } + \mathrm { xj } + \mathrm { xk } ; \mathrm { P } _ { 1 } ( 0,0,0 ) , \mathrm { P } _ { 2 } ( 1,4,7 )

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Consider the counterclockwise integral Cf(x,y)dx+g(x,y)dy\int _ { C } f ( x , y ) d x + g ( x , y ) d y where CC is a closed path in a region where Green's Theorem applies. To evaluate the integral, should one use the flux-divergence form or the circulation-flow form of Green's theorem? Explain.

(Essay)
4.8/5
(38)

Calculate the flow in the field F along the path C. - F=zy6x2+y2+z2i+zx6x2+y2+z2j+z33x2+y2+z2k,C\mathbf { F } = - \frac { z y } { 6 \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } \mathbf { i } + \frac { z x } { 6 \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } j + \frac { z ^ { 3 } } { 3 \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } \mathbf { k } , C is the curve r(t)=4cos6ti+4sin6tj+3tk,0tr ( t ) = 4 \cos 6 t i + 4 \sin 6 t j + 3 t k , 0 \leq t 1\leq 1

(Multiple Choice)
4.9/5
(33)

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. - F=3xy2i+3x2yj+6xyk;\mathbf { F } = 3 x y ^ { 2 } i + 3 x ^ { 2 } y j + 6 x y \mathbf { k } ; D: the region cut from the solid cylinder x2+y29x ^ { 2 } + y ^ { 2 } \leq 9 by the planes z=0z = 0 and z=6z = 6

(Multiple Choice)
4.8/5
(38)

Calculate the flux of the field F across the closed plane curve C. - F=y2i+x3j\mathbf { F } = \mathrm { y } ^ { 2 } \mathbf { i } + \mathrm { x } ^ { 3 } \mathbf { j } ; the curve C\mathrm { C } is the closed counterclockwise path formed from the semicircle r(t)=3costi+3\mathbf { r } ( \mathrm { t } ) = 3 \cos \mathrm { ti } + 3 sin j\mathrm { j } , 0tπ0 \leq t \leq \pi , and the straight line segment from (3,0)( - 3,0 ) to (3,0)( 3,0 )

(Multiple Choice)
4.9/5
(39)

Parametrize the surface S. - S is the portion of the plane 3x6y5z=4 that lies within the cylinder x2+y2=4S \text { is the portion of the plane } 3 x - 6 y - 5 z = - 4 \text { that lies within the cylinder } x ^ { 2 } + y ^ { 2 } = 4 \text {. }

(Essay)
5.0/5
(37)

Test the vector field F to determine if it is conservative. - F=(ex+exyz)i+(ex+exy2z)j+(ex+exyz2)k\mathbf { F } = \left( \frac { e ^ { x } + e ^ { - x } } { y z } \right) i + \left( \frac { e ^ { - x } + e ^ { x } } { y ^ { 2 } z } \right) j + \left( \frac { e ^ { x } + e ^ { - x } } { y z ^ { 2 } } \right) k

(Multiple Choice)
4.7/5
(37)

Find the work done by F over the curve in the direction of increasing t. - F=5yi+5xj+6z7k;C:r(t)=costi+sintj,0t3\mathbf { F } = - 5 \mathrm { yi } + 5 \mathrm { x } \mathbf { j } + 6 \mathrm { z } ^ { 7 } \mathbf { k } ; \mathrm { C } : \mathbf { r } ( \mathrm { t } ) = \cos \mathrm { ti } + \sin \mathrm { tj } , 0 \leq \mathrm { t } \leq 3

(Multiple Choice)
4.7/5
(42)

Find the flux of the curl of field F through the shell S. - F=(xy)i+(xz)j+(yz)k;S\mathbf { F } = ( x - y ) \mathbf { i } + ( x - z ) \mathbf { j } + ( y - z ) \mathbf { k } ; S is the portion of the cone z=3x2+y2z = 3 \sqrt { x ^ { 2 } + y ^ { 2 } } below the plane z=2z = 2

(Multiple Choice)
4.9/5
(35)

Calculate the flux of the field F across the closed plane curve C. - F=e5xi+e2yj\mathbf { F } = \mathrm { e } ^ { 5 \mathrm { x } _ { \mathrm { i } } + \mathrm { e } ^ { 2 } \mathrm { y } } \mathrm { j } ; the curve C\mathrm { C } is the closed counterclockwise path around the triangle with vertices at (0,0),(5,0)( 0,0 ) , ( 5,0 ) , and (0,1)( 0,1 )

(Multiple Choice)
4.9/5
(34)

Solve the problem. -Let M=yx2+y2\mathrm { M } = \frac { \mathrm { y } } { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } and N=xx2+y2\mathrm { N } = \frac { - \mathrm { x } } { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } . Show that CMdx+NdyzR(NxMy)dxdy\int _ { \mathrm { C } } \mathrm { Mdx } + \mathrm { Ndy } z \int _ { \mathrm { R } } \left( \frac { \partial \mathrm { N } } { \partial \mathrm { x } } - \frac { \partial \mathrm { M } } { \partial \mathrm { y } } \right) \mathrm { dx } \mathrm { dy } , where R\mathrm { R } is the region bounded by the unit circle CC centered at the origin. Why is Green's Theorem failing in this case?

(Essay)
4.9/5
(34)
Showing 1 - 20 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)