Exam 14: Vector-Valued Functions and Motion in Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Calculate the arc length of the indicated portion of the curve r(t). - r(t)=(8+2t2)i+(2t27)j+(7t2)k,1t2\mathbf { r } ( \mathrm { t } ) = \left( 8 + 2 \mathrm { t } ^ { 2 } \right) \mathbf { i } + \left( 2 \mathrm { t } ^ { 2 } - 7 \right) \mathbf { j } + \left( 7 - \mathrm { t } ^ { 2 } \right) \mathbf { k } , - 1 \leq t \leq 2

Free
(Multiple Choice)
4.7/5
(26)
Correct Answer:
Verified

A

Find the principal unit normal vector N for the curve r(t). - r(t)=(10+t)i+(9+ln(cost))k,π/2<t<π/2\mathbf { r } ( t ) = ( 10 + t ) \mathbf { i } + ( 9 + \ln ( \cos t ) ) \mathbf { k } , - \pi / 2 < t < \pi / 2

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

C

Provide an appropriate response. -  Prove that abkr(t)dt=kabr(t)dt for any scalar constant k\text { Prove that } \int _ { a } ^ { b } k r ( t ) d t = k \int _ { a } ^ { b } r ( t ) d t \text { for any scalar constant } k

Free
(Essay)
4.7/5
(32)
Correct Answer:
Verified

abkr(t)dt=abk(x(t)i+y(t)j)dt=abkx(t)i+ky(t)jdt=kabx(t)idt+kaby(t)jdt=k[abx(t)idt+aby(t)jdt]=k[ab(x(t)i+y(t)j)dt]=kabr(t)dt\begin{array}{l}\int _ { a } ^ { b } k r ( t ) d t = \int _ { a } ^ { b } k ( x ( t ) i + y ( t ) j ) d t = \int _ { a } ^ { b } k x ( t ) i + k y ( t ) j d t\\= k \int _ { a } ^ { b } x ( t ) i d t + k \int _ { a } ^ { b } y ( t ) j d t = k \left[ \int _ { a } ^ { b } x ( t ) i d t + \int _ { a } ^ { b } y ( t ) j d t \right]\\= k \left[ \int _ { a } ^ { b } ( x ( t ) i + y ( t ) j ) d t \right] = k \int _ { a } ^ { b } r ( t ) d t\end{array}

For the curve r(t), find an equation for the indicated plane at the given value of t. -r(t) = (cosh t)i + (sinh t)j + tk; rectifying plane at t = 0.

(Multiple Choice)
4.9/5
(35)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -Find the muzzle speed of a gun whose maximum range is 18.8 km. Round your answer to the nearest tenth.

(Multiple Choice)
4.8/5
(32)

 For the smooth curve r(t), find the parametric equations for the line that is tangent to r at the given parameter value t=t0\text { For the smooth curve } r ( t ) \text {, find the parametric equations for the line that is tangent to } r \text { at the given parameter value } t = t _ { 0 } \text {. } - r(t)=(4t23t)i+(t+7)j+k;t0=2\mathbf { r } ( \mathrm { t } ) = \left( 4 \mathrm { t } ^ { 2 } - 3 \mathrm { t } \right) \mathbf { i } + ( \mathrm { t } + 7 ) \mathbf { j } + \mathbf { k } ; \mathrm { t } _ { 0 } = 2

(Multiple Choice)
4.7/5
(32)

 Find the arc length parameter along the curve from the point where t=0 by evaluating s=0tv(τ)dτ\text { Find the arc length parameter along the curve from the point where } t = 0 \text { by evaluating } s = \int _ { 0 } ^ { t } | v ( \tau ) | d \tau \text {. } -r(t) = (1 + 3t)i + (1 + 6t)j + (4 - 4t)k

(Multiple Choice)
4.9/5
(38)

Evaluate the integral. - 12((27t)i+5tj)dt\int _ { 1 } ^ { 2 } ( ( 2 - 7 t ) \mathbf { i } + 5 \sqrt { t } \mathbf { j } ) d t

(Multiple Choice)
4.9/5
(36)

 For the curve r(t), write the acceleration in the form aTT + anN. \text { For the curve } r ( t ) \text {, write the acceleration in the form aTT } + \text { anN. } - r(t)=(t21)i+(2t3)j+6k\mathbf { r } ( \mathrm { t } ) = \left( \mathrm { t } ^ { 2 } - 1 \right) \mathbf { i } + ( 2 \mathrm { t } - 3 ) \mathbf { j } + 6 \mathbf { k }

(Multiple Choice)
4.8/5
(41)

Find the torsion of the space curve. - r(t)=(2t7)i+(t22)j+7k\mathbf { r } ( \mathrm { t } ) = ( 2 \mathrm { t } - 7 ) \mathbf { i } + \left( \mathrm { t } ^ { 2 } - 2 \right) \mathbf { j } + 7 \mathbf { k }

(Multiple Choice)
4.7/5
(35)

Find T, N, and B for the given space curve. - r(t)=(8+t)i+(9+ln(sect))j10k,π/2<t<π/2\mathbf { r } ( t ) = ( 8 + t ) \mathbf { i } + ( 9 + \ln ( \sec t ) ) \mathbf { j } - 10 \mathbf { k } , - \pi / 2 < t < \pi / 2

(Multiple Choice)
4.8/5
(31)

Provide an appropriate response. -Increasing the initial speed of a projectile by a factor of 6 increases its range by what factor? Assume the elevation is the same.

(Multiple Choice)
4.7/5
(33)

 For the smooth curve r(t), find the parametric equations for the line that is tangent to r at the given parameter value t=t0\text { For the smooth curve } r ( t ) \text {, find the parametric equations for the line that is tangent to } r \text { at the given parameter value } t = t _ { 0 } \text {. } - r(t)=(10sint)i(3cos3t)j+e8tkk;t0=0r ( t ) = ( 10 \sin t ) i - ( 3 \cos 3 t ) j + e ^ { - 8 t _ { k } } \mathbf { k } ; t _ { 0 } = 0

(Multiple Choice)
4.8/5
(25)

Find the principal unit normal vector N for the curve r(t). - r(t)=(t2+4)j+(2t1)kr ( t ) = \left( t ^ { 2 } + 4 \right) \mathbf { j } + ( 2 t - 1 ) \mathbf { k }

(Multiple Choice)
4.7/5
(37)

 Find the acceleration vector in terms of ur and uθ\text { Find the acceleration vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. } - r=2cos3t\mathrm { r } = 2 \cos 3 \mathrm { t } and θ=4t\theta = 4 \mathrm { t }

(Multiple Choice)
4.7/5
(41)

The vector r(t) is the position vector of a particle at time t. Find the angle between the velocity and the acceleration vectors at time t = 0. - r(t)=(3t2+3)i+(4t32t)kr ( t ) = \left( 3 t ^ { 2 } + 3 \right) i + \left( 4 t ^ { 3 } - 2 t \right) k

(Multiple Choice)
4.9/5
(36)

The vector r(t) is the position vector of a particle at time t. Find the angle between the velocity and the acceleration vectors at time t = 0. - r(t)=3ti+(t+π3t2)k\mathbf { r } ( \mathrm { t } ) = \sqrt { 3 } \mathrm { ti } + \left( \mathrm { t } + \frac { \pi } { 3 } \mathrm { t } ^ { 2 } \right) \mathbf { k }

(Multiple Choice)
4.9/5
(30)

Provide an appropriate response. -A baseball is hit when it is 3.23.2 feet above the ground. It leaves the bat with an initial speed of 152ft/sec152 \mathrm { ft } / \mathrm { sec } , making an angle of 1818 ^ { \circ } with the horizontal. Assuming a drag coefficient k=0.12\mathrm { k } = 0.12 , how high does the ball go, and when dc it reach maximum height? For projectiles with linear drag: x=+ 1- \alpha y=+ 1- \alpha+ 1-kt- where k\mathrm { k } is the drag coefficient, v0\mathrm { v } _ { 0 } and α\alpha are the projectile's initial speed and launch angle, and gg is the acceleratic of gravity (32ft/sec2)\left( 32 \mathrm { ft } / \sec ^ { 2 } \right) .

(Multiple Choice)
4.9/5
(34)

Find the torsion of the space curve. -r(t) = (cosh t)i + tj + (sinh t)k

(Multiple Choice)
4.8/5
(29)

Evaluate the integral. - 01[12tt2i+te4tj15t2(4+5t3)2k]dt\int _ { 0 } ^ { 1 } \left[ \frac { 1 } { \sqrt { 2 t - t ^ { 2 } } } i + t e ^ { 4 } t j - \frac { 15 t ^ { 2 } } { \left( 4 + 5 t ^ { 3 } \right) ^ { 2 } } \mathbf { k } \right] d t

(Multiple Choice)
4.8/5
(35)
Showing 1 - 20 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)