Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -Determine the point on the plane 6x + 9y + 4z = 15 that is closest to the point (14, 17, 11).

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

A

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). - f(x,y)=10y4x2+6y2f ( x , y ) = \frac { 10 y } { \sqrt { 4 x ^ { 2 } + 6 y ^ { 2 } } }

Free
(Essay)
4.8/5
(42)
Correct Answer:
Verified

Answers will vary. One possibility is Path 1: x = t, y = t ; Path 2: x = 0, y = t

Find the linearization of the function at the given point. -f(x, y, z) = 8xy + 4yz + 8zx at (1, 1, 1)

Free
(Multiple Choice)
4.9/5
(29)
Correct Answer:
Verified

B

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the given region R. - f(x,y)=9x2y3 at (2,1);R:x20.2,y10.2f ( x , y ) = 9 x ^ { 2 } y ^ { 3 } \text { at } ( 2,1 ) ; R : | x - 2 | \leq 0.2 , | y - 1 | \leq 0.2

(Multiple Choice)
4.8/5
(35)

Solve the problem. -  Find the equation for the tangent plane to the surface z=ln(6x2+7y2+1) at the point (0,0,0)\text { Find the equation for the tangent plane to the surface } z = \ln \left( 6 x ^ { 2 } + 7 y ^ { 2 } + 1 \right) \text { at the point } ( 0,0,0 ) \text {. }

(Multiple Choice)
4.8/5
(36)

Solve the problem. -Find the point on the curve of intersection of the paraboloid x2+y2+2z=4x ^ { 2 } + y ^ { 2 } + 2 z = 4 and the plane xy+2z=0x - y + 2 z = 0 that is farthest from the origin.

(Multiple Choice)
4.8/5
(34)

Answer the question. -Consider a function f(x,y,z)\mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) , where the independent variables are constrained to lie on the curve r(t)=x(t)i+\overrightarrow { \mathrm { r } } ( \mathrm { t } ) = \mathrm { x } ( \mathrm { t } ) \mathrm { i } + y(t)j+z(t)ky ( t ) j + z ( t ) k . What mathematical fact forms the basis for the method of Lagrange multipliers?

(Multiple Choice)
4.9/5
(36)

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=6x2y+5xy2f ( x , y ) = 6 x ^ { 2 } y + 5 x y ^ { 2 }

(Multiple Choice)
4.7/5
(40)

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the given region R. - f(x,y,z)=4xy+8yz+10zx at (1,1,1);R:x10.1,y10.1,z10.1\mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = 4 \mathrm { xy } + 8 \mathrm { yz } + 10 \mathrm { zx } \text { at } ( 1,1,1 ) ; \mathrm { R } : | \mathrm { x } - 1 | \leq 0.1 , | \mathrm { y } - 1 | \leq 0.1 , | \mathrm { z } - 1 | \leq 0.1

(Multiple Choice)
4.8/5
(38)

Find the derivative of the function at P0 in the direction of u. - f(x,y)=tan13xy,P0(7,8),u=12i5jf ( x , y ) = \tan ^ { - 1 } \frac { - 3 x } { y } , \quad P _ { 0 } ( - 7 , - 8 ) , \quad \mathbf { u } = 12 \mathbf { i } - 5 \mathbf { j }

(Multiple Choice)
4.8/5
(32)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). -  Define f(0,0) in a way that extends f(x,y)=x2y2x2+y2 to be continuous at the origin. \text { Define } f ( 0,0 ) \text { in a way that extends } f ( x , y ) = \frac { x ^ { 2 } y ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } \text { to be continuous at the origin. }

(Multiple Choice)
4.7/5
(50)

Match the surface show below to the graph of its level curves. -Match the surface show below to the graph of its level curves. -

(Multiple Choice)
4.8/5
(39)

Find the linearization of the function at the given point. - f(x,y,z)=tan1xyzf ( x , y , z ) = \tan ^ { - 1 } x y z at (9,9,9)( 9,9,9 )

(Multiple Choice)
4.8/5
(33)

Solve the problem. -The surface area of a hollow cylinder (tube) is given by S=2π(R1+R2)(h+R1R2),S = 2 \pi \left( R _ { 1 } + R _ { 2 } \right) \left( h + R _ { 1 } - R _ { 2 } \right) , where h\mathrm { h } is the length of the cylinder and R1\mathrm { R } _ { 1 } and R2\mathrm { R } _ { 2 } are the outer and inner radii. If h,R1\mathrm { h } _ { , } \mathrm { R } _ { 1 } , and R2\mathrm { R } _ { 2 } are measured to be 10 inches, 3 inches, and 5 inches respectively, and if these measurements are accurate to within 0.10.1 inches, estimate the maximum possible error in computing SS .

(Multiple Choice)
4.8/5
(38)

Give an appropriate answer. - f(x,y)=sin2(2xy2y)f ( x , y ) = \sin ^ { 2 } \left( - 2 x y ^ { 2 } - y \right)

(Multiple Choice)
4.9/5
(47)

Solve the problem. -Find the maximum value of f(x,y,z)=x+2y+3zf ( x , y , z ) = x + 2 y + 3 z subject to xy+z=1x - y + z = 1 and x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 .

(Multiple Choice)
4.9/5
(42)

Provide an appropriate response. -Which of the following space regions is (are) closed? i. The hemispherical region centered at the origin with z>0z > 0 and radius r\mathrm { r } bounded by 0rrO0 \leq \mathrm { r } \leq \mathrm { r } _ { \mathrm { O } } ii. The xyx y -plane iii. The half-space x>0x > 0 iv. Space itself

(Multiple Choice)
4.9/5
(39)

Give an appropriate answer. - f(x,y)=(10x5y45)2f ( x , y ) = \left( 10 x ^ { 5 } y ^ { 4 } - 5 \right) ^ { 2 }

(Multiple Choice)
4.9/5
(39)

Solve the problem. -Maximize f(x,y)=2x2+10xy+9y2f ( x , y ) = 2 x ^ { 2 } + 10 x y + 9 y ^ { 2 } subject to x+y=1x + y = 1 and x+4y=9x + 4 y = 9 .

(Multiple Choice)
4.9/5
(32)

Give an appropriate answer. - f(x,y)=ln(y10x9)f ( x , y ) = \ln \left( \frac { y ^ { 10 } } { x ^ { 9 } } \right)

(Multiple Choice)
4.8/5
(41)
Showing 1 - 20 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)