Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Integrate the function. - x2+369x2dx\int \frac { \sqrt { x ^ { 2 } + 36 } } { 9 x ^ { 2 } } d x

Free
(Multiple Choice)
4.9/5
(40)
Correct Answer:
Verified

B

Express the integrand as a sum of partial fractions and evaluate the integral. - 4x4+36x2+72x(x2+6)2dx\int \frac { 4 x ^ { 4 } + 36 x ^ { 2 } + 72 } { x \left( x ^ { 2 } + 6 \right) ^ { 2 } } d x

Free
(Multiple Choice)
4.9/5
(33)
Correct Answer:
Verified

C

Find the area or volume. -  Find the area of the region bounded by the curve y=8x2, the x-axis, and on the left by x=1\text { Find the area of the region bounded by the curve } y = 8 x ^ { - 2 } \text {, the } x \text {-axis, and on the left by } x = 1 \text {. }

Free
(Multiple Choice)
4.9/5
(26)
Correct Answer:
Verified

C

Use a CAS to perform the integration. - lnxx8\int \frac { \ln x } { x ^ { 8 } }

(Multiple Choice)
4.8/5
(28)

Use reduction formulas to evaluate the integral. - cot43xdx\int \cot ^ { 4 } 3 x d x

(Multiple Choice)
4.8/5
(38)

Find the surface area or volume. -Use substitution and a table of integrals to find, to two decimal places, the area of the surface generated by revolving the curve y=ex,0x3y = e ^ { x } , 0 \leq x \leq 3 , about the xx -axis.

(Multiple Choice)
4.9/5
(36)

Evaluate the improper integral or state that it is divergent. - 021xe2xdx\int _ { 0 } ^ { \infty } 21 x e ^ { 2 x } d x

(Multiple Choice)
4.7/5
(30)

Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. - x4x29dx\int \frac { x ^ { 4 } } { x ^ { 2 } - 9 } d x

(Multiple Choice)
4.7/5
(32)

Evaluate the improper integral or state that it is divergent. - 6dx(x5)(x4)\int _ { 6 } ^ { \infty } \frac { d x } { ( x - 5 ) ( x - 4 ) }

(Multiple Choice)
4.7/5
(34)

Solve the problem. -Suppose a brewery has a filling machine that fills 12 ounce bottles of beer. It is known that the amount of beer poured by this filling machine follows a normal distribution with a mean of 12.14 ounces and a standard Deviation of 0.04 ounce. Find the probability that the bottle contains fewer than 12.04 ounces of beer.

(Multiple Choice)
4.8/5
(39)

Solve the problem. -Estimate the minimum number of subintervals needed to approximate the integral 0π4cosxdx\int _ { 0 } ^ { \pi } 4 \cos x d x with an error of magnitude less than 10410 ^ { - 4 } using Simpson's Rule.

(Multiple Choice)
4.8/5
(32)

Provide an appropriate response. -(a) Show that 0dxx3+1\int _ { 0 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } converges. (b) Show that 50dxx3+10.0002\int _ { 50 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } \leq 0.0002 . (c) Suppose 0dxx3+1\int _ { 0 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } is approximated by 050dxx3+1\int _ { 0 } ^ { 50 } \frac { d x } { x ^ { 3 } + 1 } . Based on your answer to part (b), what is the maximum possible error? (d) Use a numerical method to estimate the value of 0dxx3+1\int _ { 0 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } . (e) Determine whether 1dxx3+1\int _ { - 1 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } converges or diverges, and justify your answer. If it converges, estimate its value to an accuracy of at least two decimal places.

(Essay)
4.7/5
(40)

Evaluate the integral. - 2cos33xdx\int 2 \cos ^ { 3 } 3 x d x

(Multiple Choice)
4.9/5
(31)

Solve the initial value problem for x as a function of t. - (t25t+6)dxdt=1(t>3),x(4)=0\left( t ^ { 2 } - 5 t + 6 \right) \frac { d x } { d t } = 1 \quad ( t > 3 ) , x ( 4 ) = 0

(Multiple Choice)
4.8/5
(45)

Solve the problem. -Find the area of the region enclosed by the curve y=xcosxy = x \cos x and the xx -axis for 92πx112π\frac { 9 } { 2 } \pi \leq x \leq \frac { 11 } { 2 } \pi .

(Multiple Choice)
4.9/5
(30)

Find the value of the constant k so that the given function in a probability density function for a random variable over the specified interval. - f(x)=6e5xf ( x ) = 6 e ^ { - 5 x } over [0,k][ 0 , k ]

(Multiple Choice)
4.8/5
(30)

Use integration by parts to establish a reduction formula for the integral. - sinnxdx\int \sin ^ { n } x d x

(Multiple Choice)
4.9/5
(29)

Use Simpson's Rule with n = 4 steps to estimate the integral. - 025x2dx\int _ { 0 } ^ { 2 } 5 x ^ { 2 } d x

(Multiple Choice)
4.8/5
(30)

Use integration by parts to establish a reduction formula for the integral. - (lnax)ndx\int ( \ln a x ) ^ { n } d x

(Multiple Choice)
4.8/5
(40)

Use reduction formulas to evaluate the integral. - sin32xsec52xdx\int \sin ^ { 3 } 2 x \sec ^ { 5 } 2 x d x

(Multiple Choice)
4.7/5
(38)
Showing 1 - 20 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)