Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the graph to evaluate the limit. - limxθf(x)\lim _{x \rightarrow \theta} f(x)  Use the graph to evaluate the limit. - \lim _{x \rightarrow \theta} f(x)

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

A

Find the limit if it exists. - limx7(310x)\lim _ { x \rightarrow 7 } ( 3 - 10 x )

Free
(Multiple Choice)
4.8/5
(39)
Correct Answer:
Verified

A

For the function f whose graph is given, determine the limit. -Find limx7f(x)\lim _ { x \rightarrow 7 ^ { - } } f ( x )  For the function f whose graph is given, determine the limit. -Find  \lim _ { x \rightarrow 7 ^ { - } } f ( x )

Free
(Multiple Choice)
4.8/5
(26)
Correct Answer:
Verified

D

Use the graph to estimate the specified limit. -Find limxπ/2)f(x)\lim _ { x \rightarrow \pi / 2 ) ^ { - } } f ( x ) and limxπ/2)+f(x)\lim _ { x \rightarrow \pi / 2 ) ^ { + } } f ( x )  Use the graph to estimate the specified limit. -Find  \lim _ { x \rightarrow \pi / 2 ) ^ { - } } f ( x )  and  \lim _ { x \rightarrow \pi / 2 ) ^ { + } } f ( x )

(Multiple Choice)
4.9/5
(41)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

Sketch the graph of a function y = f(x) that satisfies the given conditions. - limxg(x)=5,limxg(x)=5,limxθ+g(x)=5,limxθg(x)=5\lim _ { x \rightarrow \infty } g ( x ) = - 5 , \lim _ { x \rightarrow \infty } g ( x ) = 5 , \lim _ { x \rightarrow \theta ^ { + } } g ( x ) = 5 , \lim _ { x \rightarrow \theta ^ { - } } g ( x ) = - 5 \text {. }  Sketch the graph of a function y = f(x) that satisfies the given conditions. - \lim _ { x \rightarrow \infty } g ( x ) = - 5 , \lim _ { x \rightarrow \infty } g ( x ) = 5 , \lim _ { x \rightarrow \theta ^ { + } } g ( x ) = 5 , \lim _ { x \rightarrow \theta ^ { - } } g ( x ) = - 5 \text {. }

(Essay)
4.8/5
(33)

Find the limit. - limx7+1(x7)2\lim _ { x \rightarrow 7 ^ { + } } \frac { 1 } { ( x - 7 ) ^ { 2 } }

(Multiple Choice)
4.9/5
(42)

Provide an appropriate response. -A function y=f(x)\mathrm { y } = \mathrm { f } ( \mathrm { x } ) is continuous on [1,1][ - 1,1 ] . It is known to be positive at x=1x = - 1 and negative at x=1x = 1 . What, if anything, does this indicate about the equation f(x)=0f ( x ) = 0 ? Illustrate with a sketch.  Provide an appropriate response. -A function  \mathrm { y } = \mathrm { f } ( \mathrm { x } )  is continuous on  [ - 1,1 ] . It is known to be positive at  x = - 1  and negative at  x = 1 . What, if anything, does this indicate about the equation  f ( x ) = 0  ? Illustrate with a sketch.

(Essay)
4.9/5
(42)

Provide an appropriate response. -  Let limx3f(x)=5 and limx3g(x)=7. Find limx3[f(x)+g(x)]2\text { Let } \lim _ { x \rightarrow 3 } f ( x ) = - 5 \text { and } \lim _ { x \rightarrow 3 } g ( x ) = - 7 \text {. Find } \lim _ { x \rightarrow 3 } [ f ( x ) + g ( x ) ] ^ { 2 } \text {. }

(Multiple Choice)
4.8/5
(35)

Find the limit. - limx2x2+2x+1\lim _ { x \rightarrow 2 } \sqrt { x ^ { 2 } + 2 x + 1 }

(Multiple Choice)
4.9/5
(33)

Provide an appropriate response. -If functions f(x)f ( x ) and g(x)g ( x ) are continuous for 0x6,couldf(x)g(x)0 \leq x \leq 6 , \operatorname { could } \frac { f ( x ) } { g ( x ) } possibly be discontinuous at a point of [0,6]?[ 0,6 ] ? Provide an example.

(Essay)
4.9/5
(37)

Find the limit. - limx(π/2)+tanx\lim _{x-(\pi / 2)^{+}} \tan x

(Multiple Choice)
4.9/5
(35)

Use the table to estimate the rate of change of y at the specified value of x. - x=1.x= 1 . x y 0 0 2 0.01 4 0.04 6 0.09 8 0.16 0 0.25 2 0.36 4 0.49

(Multiple Choice)
4.9/5
(36)

Answer the question. -Is f\mathrm { f } continuous on (2,4]( - 2,4 ] ? f(x)={x3,2<x03x,0x<25,2<x40,x=2f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } , & - 2 < x \leq 0 \\- 3 x , & 0 \leq x < 2 \\5 , & 2 < x \leq 4 \\0 , & x = 2\end{array} \right.  Answer the question. -Is  \mathrm { f }  continuous on  ( - 2,4 ]  ?  f ( x ) = \left\{ \begin{array} { l l }  x ^ { 3 } , & - 2 < x \leq 0 \\ - 3 x , & 0 \leq x < 2 \\ 5 , & 2 < x \leq 4 \\ 0 , & x = 2 \end{array} \right.

(True/False)
4.9/5
(41)

Provide an appropriate response. -  Use the Intermediate Value Theorem to prove that 7sinx=x has a solution between π2 and π\text { Use the Intermediate Value Theorem to prove that } 7 \sin x = x \text { has a solution between } \frac { \pi } { 2 } \text { and } \pi \text {. }

(Essay)
4.8/5
(28)

Find the slope of the curve at the given point P and an equation of the tangent line at P. - y=x2+11x15,P(1,3)y = x ^ { 2 } + 11 x - 15 , P ( 1 , - 3 )

(Multiple Choice)
4.8/5
(37)

Sketch the graph of a function y = f(x) that satisfies the given conditions. - limxf(x)=0,limx2f(x)=,limx2+f(x)=,\lim _ { x \rightarrow \infty } f ( x ) = 0 , \lim _ { x \rightarrow 2 ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow 2 ^ { + } } f ( x ) = \infty ,  Sketch the graph of a function y = f(x) that satisfies the given conditions. - \lim _ { x \rightarrow \infty } f ( x ) = 0 , \lim _ { x \rightarrow 2 ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow 2 ^ { + } } f ( x ) = \infty ,

(Essay)
4.7/5
(37)

Find the limit, if it exists. - limxx3+12x25x5x\lim _ { x \rightarrow - } \frac { x ^ { 3 } + 12 x ^ { 2 } - 5 x } { 5 x }

(Multiple Choice)
4.8/5
(39)

Find the limit, if it exists. - limx4x216x4\lim _ { x \rightarrow 4 } \frac { x ^ { 2 } - 16 } { x - 4 }

(Multiple Choice)
4.8/5
(34)

Answer the question. -Is f\mathrm { f } continuous at x=0?\mathrm { x } = 0 ? f(x)={x3,2<x04x,0x<25,2<x40,x=2f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } , & - 2 < x \leq 0 \\- 4 x , & 0 \leq x < 2 \\5 , & 2 < x \leq 4 \\0 , & x = 2\end{array} \right.  Answer the question. -Is  \mathrm { f }  continuous at  \mathrm { x } = 0 ?   f ( x ) = \left\{ \begin{array} { l l }  x ^ { 3 } , & - 2 < x \leq 0 \\ - 4 x , & 0 \leq x < 2 \\ 5 , & 2 < x \leq 4 \\ 0 , & x = 2 \end{array} \right.

(True/False)
4.7/5
(37)
Showing 1 - 20 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)