Exam 14: Introduction to Multiple Regression
Exam 1: Introduction145 Questions
Exam 2: Organizing and Visualizing Data210 Questions
Exam 3: Numerical Descriptive Measures153 Questions
Exam 4: Basic Probability171 Questions
Exam 5: Discrete Probability Distributions218 Questions
Exam 6: The Normal Distribution and Other Continuous Distributions191 Questions
Exam 7: Sampling and Sampling Distributions197 Questions
Exam 8: Confidence Interval Estimation196 Questions
Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests165 Questions
Exam 10: Two-Sample Tests210 Questions
Exam 11: Analysis of Variance213 Questions
Exam 12: Chi-Square Tests and Nonparametric Tests201 Questions
Exam 13: Simple Linear Regression213 Questions
Exam 14: Introduction to Multiple Regression355 Questions
Exam 15: Multiple Regression Model Building96 Questions
Exam 16: Time-Series Forecasting168 Questions
Exam 17: Statistical Applications in Quality Management133 Questions
Exam 18: A Roadmap for Analyzing Data54 Questions
Exam 19: Questions that Involve Online Topics321 Questions
Select questions type
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
-Referring to Table 14-3, to test whether aggregate price index has a positive impact on consumption, the p-value is

(Multiple Choice)
4.8/5
(39)
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
-Referring to Table 14-4, at the 0.01 level of significance, what conclusion should the builder draw regarding the inclusion of School in the regression model?

(Multiple Choice)
4.8/5
(32)
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
-Referring to Table 14-3, the p-value for the aggregated price index is

(Multiple Choice)
4.7/5
(37)
TABLE 14-8
A financial analyst wanted to examine the relationship between salary (in $1,000) and 4 variables: age (X₁ = Age), experience in the field (X₂ = Exper), number of degrees (X₃ = Degrees), and number of previous jobs in the field (X₄ = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:
-Referring to Table 14-8, the value of the coefficient of multiple determination, r²Y.₁₂₃₄, is ________.

(Short Answer)
4.9/5
(23)
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below:
-Referring to Table 14-4, one individual in the sample had an annual income of $100,000, a family size of 10, and an education of 16 years. This individual owned a home with an area of 7,000 square feet (House = 70.00). What is the residual (in hundreds of square feet) for this data point?

(Multiple Choice)
4.9/5
(39)
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression.
-Referring to Table 14-5, what are the predicted sales (in millions of dollars) for a company spending $100 million on capital and $100 million on wages?

(Multiple Choice)
4.9/5
(48)
TABLE 14-7
The department head of the accounting department wanted to see if she could predict the GPA of students using the number of course units (credits) and total SAT scores of each. She takes a sample of students and generates the following Microsoft Excel output:
-Referring to Table 14-7, the value of the adjusted coefficient of multiple determination, r²ₐdⱼ, is ________.

(Short Answer)
4.9/5
(37)
TABLE 14-11
A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in pounds). Two variables thought to affect weight-loss are client's length of time on the weight-loss program and time of session. These variables are described below:
Y = Weight-loss (in pounds)
X₁ = Length of time in weight-loss program (in months)
X₂ = 1 if morning session, 0 if not
X₃ = 1 if afternoon session, 0 if not (Base level = evening session)
Data for 12 clients on a weight-loss program at the clinic were collected and used to fit the interaction model:
Y = β₀ + β₁X₁ + β₂X₂ + β₃X₃ + β₄X₁X₂ + β₅X₁X₂ + ε
Partial output from Microsoft Excel follows:
-Referring to Table 14-11, what null hypothesis would you test to determine whether the slope of the linear relationship between weight-loss (Y) and time in the program (X₁) varies according to time of session?

(Multiple Choice)
4.7/5
(39)
TABLE 14-17
Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are
Age and Manager. The results of the regression analysis are given below:
-Referring to Table 14-17 Model 1, the alternative hypothesis H₁: At least one of βⱼ ≠ 0 for j = 1, 2, 3, 4, 5, 6 implies that the number of weeks a worker is unemployed due to a layoff is affected by all of the explanatory variables.



(True/False)
5.0/5
(35)
TABLE 14-17
Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are
Age and Manager. The results of the regression analysis are given below:
-Referring to Table 14-17 and using both Model 1 and Model 2, the null hypothesis for testing whether the independent variables that are not significant individually are also not significant as a group in explaining the variation in the dependent variable should be rejected at a 5% level of significance?



(True/False)
4.8/5
(32)
TABLE 14-15
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable, X₁ = % Attendance, X₂= Salaries and X₃= Spending:
-Referring to Table 14-15, what is the p-value of the test statistic when testing whether instructional spending per pupil has any effect on percentage of students passing the proficiency test, taking into account the effect of all the other independent variables?

(Short Answer)
4.9/5
(40)
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
-Referring to Table 14-3, the p-value for GDP is

(Multiple Choice)
4.9/5
(35)
TABLE 14-17
Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are
Age and Manager. The results of the regression analysis are given below:
-Referring to Table 14-17 Model 1, what is the value of the test statistic when testing whether age has any effect on the number of weeks a worker is unemployed due to a layoff while holding constant the effect of all the other independent variables?



(Short Answer)
4.9/5
(33)
TABLE 14-17
Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are
Age and Manager. The results of the regression analysis are given below:
-Referring to Table 14-17 Model 1, we can conclude that, holding constant the effect of the other independent variables, the number of years of education received has no impact on the mean number of weeks a worker is unemployed due to a layoff at a 1% level of significance if all we have is the information of the 95% confidence interval estimate for β₂.



(True/False)
4.8/5
(33)
TABLE 14-10
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premiums depend very much on the age of the individual, the number of traffic tickets received by the individual, and the population density of the city in which the individual lives. You performed a regression analysis in Excel and obtained the following information:
-Referring to Table 14-10, the residual mean squares (MSE) that are missing in the ANOVA table should be ________.

(Short Answer)
4.7/5
(32)
Showing 341 - 355 of 355
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)