Exam 8: Conservation of Energy
Exam 1: Physics and Measurement25 Questions
Exam 2: Motion in One Dimension66 Questions
Exam 3: Vectors47 Questions
Exam 4: Motion in Two Dimensions79 Questions
Exam 5: The Laws of Motion113 Questions
Exam 6: Circular Motion and Other Applications of Newtons Laws55 Questions
Exam 7: Energy of a System74 Questions
Exam 8: Conservation of Energy84 Questions
Exam 9: Linear Momentum and Collisions89 Questions
Exam 10: Rotation of a Rigid Object About a Fixed Axis82 Questions
Exam 11: Angular Momentum46 Questions
Exam 12: Static Equilibrium and Elasticity34 Questions
Exam 13: Universal Gravitation47 Questions
Exam 14: Fluid Mechanics53 Questions
Exam 15: Oscillatory Motion41 Questions
Exam 16: Wave Motion82 Questions
Exam 18: Superposition and Standing Waves72 Questions
Exam 19: Temperature47 Questions
Exam 20: The First Law of Thermodynamics61 Questions
Exam 21: The Kinetic Theory of Gases38 Questions
Exam 22: Heat Engines, Entropy, and the Second Law of Thermodynamics55 Questions
Exam 23: Electric Fields67 Questions
Exam 24: Gausss Law82 Questions
Exam 25: Electric Potential111 Questions
Exam 26: Capacitance and Dielectrics63 Questions
Exam 27: Current and Resistance34 Questions
Exam 28: Direct-Current Circuits84 Questions
Exam 29: Magnetic Fields80 Questions
Exam 30: Sources of the Magnetic Field95 Questions
Exam 31: Faradays Law62 Questions
Exam 32: Inductance23 Questions
Exam 33: Alternating-Current Circuits65 Questions
Exam 34: Electromagnetic Waves40 Questions
Exam 35: The Nature of Light and the Principles of Ray Optics37 Questions
Exam 36: Image Formation43 Questions
Exam 37: Wave Optics48 Questions
Exam 38: Diffraction Patterns and Polarization47 Questions
Exam 39: Relativity34 Questions
Exam 40: Introduction to Quantum Physics48 Questions
Exam 41: Quantum Mechanics33 Questions
Exam 42: Atomic Physics59 Questions
Exam 43: Molecules and Solids46 Questions
Exam 44: Nuclear Structure89 Questions
Exam 46: Particle Physics and Cosmology34 Questions
Select questions type
Objects A and B, of mass M and 2M respectively, are each pushed a distance d straight up an inclined plane by a force F parallel to the plane. The coefficient of kinetic friction between each mass and the plane has the same value μk. At the highest point,
Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
A
A 3.0-kg block is on a horizontal surface. The block is at rest when, at t = 0, a force (magnitude P = 12 N) acting parallel to the surface is applied to the block causing it to accelerate. The coefficient of kinetic friction between the block and the surface is 0.20. At what rate is the force P doing work on the block at t = 2.0 s?
Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
B
A 2.0-kg mass is projected from the edge of the top of a 20-m tall building with a velocity of 24 m/s at some unknown angle above the horizontal. Disregard air resistance and assume the ground is level. What is the kinetic energy of the mass just before it strikes the ground?
Free
(Multiple Choice)
4.9/5
(35)
Correct Answer:
B
A pendulum is made by letting a 2.0-kg object swing at the end of a string that has a length of 1.5 m. The maximum angle the string makes with the vertical as the pendulum swings is 30°. What is the speed of the object at the lowest point in its trajectory?
(Multiple Choice)
4.8/5
(37)
A spring with spring constant k = 800 N/m is extended 12 cm from its equilibrium position. A spring with 6.0 cm extension from equilibrium will have the same potential energy as the first spring if its spring constant is
(Multiple Choice)
4.9/5
(32)
A 1.2-kg mass is projected down a rough circular track (radius = 2.0 m) as shown. The speed of the mass at point A is 3.2 m/s, and at point B, it is 6.0 m/s. What is the change in mechanical energy done on the system between A and B by the force of friction? 

(Multiple Choice)
4.9/5
(32)
A spring with spring constant 800 N/m compressed 0.200 m is released and projects a 0.800 kg mass along a frictionless surface. The mass reaches a surface area where μk = 0.400 and comes to a stop. The following student solution contains at least one error. What is the error? 

(Multiple Choice)
4.9/5
(29)
The speed of a 4.0-kg object is given by v = (2t) m/s, where t is in s. At what rate is the resultant force on this object doing work at t = 1 s?
(Multiple Choice)
4.9/5
(30)
A 2.0-kg block is projected down a plane that makes an angle of 20° with the horizontal with an initial kinetic energy of 2.0 J. If the coefficient of kinetic friction between the block and plane is 0.40, how far will the block slide down the plane before coming to rest?
(Multiple Choice)
4.7/5
(37)
A large spring is used to stop the cars after they come down the last hill of a roller coaster. The cars start at rest at the top of the hill and are caught by a mechanism at the instant their velocities at the bottom are zero. Compare the compression of the spring, xA, for a fully loaded car with that, xB, for a lightly loaded car when mA = 2mB. 

(Multiple Choice)
4.7/5
(28)
As an object moves from point A to point B only two forces act on it: one force is nonconservative and does −30 J of work, the other force is conservative and does +50 J of work. Between A and B,
(Multiple Choice)
4.7/5
(35)
Starting from rest at t = 0, a 5.0-kg block is pulled across a horizontal surface by a constant horizontal force having a magnitude of 12 N. If the coefficient of friction between the block and the surface is 0.20, at what rate is the 12-N force doing work at t = 5.0 s?
(Multiple Choice)
4.8/5
(37)
A skier weighing 0.70 kN goes over a frictionless circular hill as shown. If the skier's speed at point A is 9.2 m/s, what is his speed at the top of the hill (point B)? 

(Multiple Choice)
4.9/5
(39)
A 0.80-kg object tied to the end of a 2.0-m string swings as a pendulum. At the lowest point of its swing, the object has a kinetic energy of 10 J. Determine the speed of the object at the instant when the string makes an angle of 50° with the vertical.
(Multiple Choice)
4.7/5
(32)
When an automobile moves with constant velocity the power developed is used to overcome the frictional forces exerted by the air and the road. If the power developed in an engine is 50.0 hp, what total frictional force acts on the car at 55 mph (24.6 m/s)? One horsepower equals 746 W.
(Short Answer)
4.9/5
(29)
A single conservative force Fx = (6.0x − 12) N (x is in m) acts on a particle moving along the x axis. The potential energy associated with this force is assigned a value of +20 J at x = 0. What is the potential energy at x = 3.0 m?
(Multiple Choice)
4.9/5
(40)
Objects A and B, of mass M and 2M respectively, are each pushed a distance d straight up an inclined plane by a force F parallel to the plane. The coefficient of kinetic friction between each mass and the plane has the same value μk. At the highest point,
(Multiple Choice)
4.7/5
(37)
Two equal masses are raised at constant velocity by ropes that run over pulleys, as shown below. Mass B is raised twice as fast as mass A. The magnitudes of the forces are FA and FB, while the power supplied is respectively PA and PB. Which statement is correct? 

(Multiple Choice)
4.7/5
(33)
A 1.6-kg block slides down a plane (inclined at 25° with the horizontal) at a constant speed of 2.0 m/s. At what rate is the frictional force changing the mechanical energy of the block?
(Multiple Choice)
4.9/5
(26)
As a result of friction between internal parts of an isolated system
(Multiple Choice)
4.8/5
(40)
Showing 1 - 20 of 84
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)