Exam 6: Circular Motion and Other Applications of Newtons Laws
Exam 1: Physics and Measurement25 Questions
Exam 2: Motion in One Dimension66 Questions
Exam 3: Vectors47 Questions
Exam 4: Motion in Two Dimensions79 Questions
Exam 5: The Laws of Motion113 Questions
Exam 6: Circular Motion and Other Applications of Newtons Laws55 Questions
Exam 7: Energy of a System74 Questions
Exam 8: Conservation of Energy84 Questions
Exam 9: Linear Momentum and Collisions89 Questions
Exam 10: Rotation of a Rigid Object About a Fixed Axis82 Questions
Exam 11: Angular Momentum46 Questions
Exam 12: Static Equilibrium and Elasticity34 Questions
Exam 13: Universal Gravitation47 Questions
Exam 14: Fluid Mechanics53 Questions
Exam 15: Oscillatory Motion41 Questions
Exam 16: Wave Motion82 Questions
Exam 18: Superposition and Standing Waves72 Questions
Exam 19: Temperature47 Questions
Exam 20: The First Law of Thermodynamics61 Questions
Exam 21: The Kinetic Theory of Gases38 Questions
Exam 22: Heat Engines, Entropy, and the Second Law of Thermodynamics55 Questions
Exam 23: Electric Fields67 Questions
Exam 24: Gausss Law82 Questions
Exam 25: Electric Potential111 Questions
Exam 26: Capacitance and Dielectrics63 Questions
Exam 27: Current and Resistance34 Questions
Exam 28: Direct-Current Circuits84 Questions
Exam 29: Magnetic Fields80 Questions
Exam 30: Sources of the Magnetic Field95 Questions
Exam 31: Faradays Law62 Questions
Exam 32: Inductance23 Questions
Exam 33: Alternating-Current Circuits65 Questions
Exam 34: Electromagnetic Waves40 Questions
Exam 35: The Nature of Light and the Principles of Ray Optics37 Questions
Exam 36: Image Formation43 Questions
Exam 37: Wave Optics48 Questions
Exam 38: Diffraction Patterns and Polarization47 Questions
Exam 39: Relativity34 Questions
Exam 40: Introduction to Quantum Physics48 Questions
Exam 41: Quantum Mechanics33 Questions
Exam 42: Atomic Physics59 Questions
Exam 43: Molecules and Solids46 Questions
Exam 44: Nuclear Structure89 Questions
Exam 46: Particle Physics and Cosmology34 Questions
Select questions type
A 30-kg child rides on a circus Ferris wheel that takes her around a vertical circular path with a radius of 20 m every 22 s. What is the magnitude of the resultant force on the child at the highest point on this trajectory?
Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
A
The equation below is the solution to a problem.
. The best physical representation of this equation is

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
A
A car enters a level, unbanked semi-circular hairpin turn of 300 m radius at a speed of 40 m/s. The coefficient of friction between the tires and the road is μ = 0.25. If the car maintains a constant speed of 40 m/s, it will
Free
(Multiple Choice)
4.9/5
(33)
Correct Answer:
D
A 0.50 kg mass attached to the end of a string swings in a vertical circle (radius = 2.0 m). When the mass is at the highest point of the circle the speed of the mass is 8.0 m/s. What is the magnitude of the force of the string on the mass at this position?
(Multiple Choice)
4.8/5
(36)
A rock attached to a string swings in a vertical circle. Which free body diagram could correctly describe the force(s) on the rock when it is at the highest point?
(Multiple Choice)
4.9/5
(39)
An airplane moves 140 m/s as it travels around a vertical circular loop which has a 1.0-km radius. What is the magnitude of the resultant force on the 70-kg pilot of this plane at the bottom of this loop?
(Multiple Choice)
4.9/5
(33)
A 4.0-kg mass attached to the end of a string swings in a vertical circle of radius 2.0 m. When the string makes an angle of 35° with the vertical as shown, the speed of the mass is 5.0 m/s. At this instant what is the magnitude of the force the string exerts on the mass? 

(Multiple Choice)
4.8/5
(38)
A 0.20-kg object attached to the end of a string swings in a vertical circle (radius = 80 cm). At the top of the circle the speed of the object is 4.5 m/s. What is the magnitude of the tension in the string at this position?
(Multiple Choice)
4.8/5
(30)
An airplane flies in a horizontal circle of radius 500 m at a speed of 150 m/s. If the plane were to fly in the same 500 m circle at a speed of 300 m/s, by what factor would its centripetal acceleration change?
(Multiple Choice)
4.8/5
(33)
A 0.30-kg mass attached to the end of a string swings in a vertical circle (R = 1.6 m), as shown. At an instant when θ = 50°, the tension in the string is 8.0 N. What is the magnitude of the resultant force on the mass at this instant? 

(Multiple Choice)
4.8/5
(28)
A small dense object is suspended from the rear view mirror in a car by a lightweight fiber. As the car is accelerating at 1.90 m/s2, what angle does the string make with the vertical?
(Short Answer)
4.9/5
(41)
A skydiver of 75 kg mass has a terminal velocity of 60 m/s. At what speed is the resistive force on the skydiver half that when at terminal speed?
(Multiple Choice)
4.9/5
(41)
A highway curve has a radius of 0.14 km and is unbanked. A car weighing 12 kN goes around the curve at a speed of 24 m/s without slipping. What is the magnitude of the horizontal force of the road on the car?
(Multiple Choice)
4.9/5
(30)
A car travels around an unbanked highway curve (radius 0.15 km) at a constant speed of 25 m/s. What is the magnitude of the resultant force acting on the driver, who weighs 0.80 kN?
(Multiple Choice)
4.8/5
(30)
When a car goes around a circular curve on a level road without slipping,
(Multiple Choice)
4.8/5
(37)
An amusement ride consists of a car moving in a vertical circle on the end of a rigid boom. The radius of the circle is 10 m. The combined weight of the car and riders is 5.0 kN. At the top of the circle the car has a speed of 5.0 m/s which is not changing at that instant. What is the force of the boom on the car at the top of the circle?
(Multiple Choice)
4.7/5
(36)
A race car travels 40 m/s around a banked (45° with the horizontal) circular (radius = 0.20 km) track. What is the magnitude of the resultant force on the 80-kg driver of this car?
(Multiple Choice)
4.7/5
(33)
An airplane pilot experiences weightlessness as she passes over the top of a loop-the-loop maneuver. If her speed is 200 m/s at the time, find the radius of the loop.
(Short Answer)
4.7/5
(37)
A car travels along the perimeter of a vertical circle (radius = 0.25 km) at a constant speed of 30 m/s. What is the magnitude of the resultant force on the 60-kg driver of the car at the lowest point on this circular path?
(Multiple Choice)
4.8/5
(31)
A 50-kg child riding a Ferris wheel (radius = 10 m) travels in a vertical circle. The wheel completes one revolution every 10 s. What is the magnitude of the force on the child by the seat at the highest point on the circular path?
(Multiple Choice)
4.9/5
(40)
Showing 1 - 20 of 55
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)