Exam 14: Introduction to Multiple Regression

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. Regression Statistics Multiple R 0.8013 R Square 0.6421 Adjusted R Square 0.6313 Standard Error 1.0507 Observations 171  ANOVA \text { ANOVA } df SS MS F Significance F Regression 5 326.8700 65.3740 59.2168 0.0000 Residual 165 182.1564 1.1040 Total 170 509.0263 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 12.8627 1.0927 11.7713 0.0000 10.7052 15.0202 Cargo Vol 0.0259 0.0102 2.5518 0.0116 0.0059 0.0460 HP -0.0200 0.0018 -11.3307 0.0000 -0.0235 -0.0165 MPG -0.0620 0.0303 -2.0464 0.0423 -0.1218 -0.0022 SUV 0.7679 0.4314 1.7802 0.0769 -0.0838 1.6196 Sedan 0.6427 0.2790 2.3034 0.0225 0.0918 1.1935 The various residual plots are as shown below.  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, the 0 to 60 miles per hour acceleration time of a sedan is predicted to be 0.1252 seconds higher than that of an SUV.  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, the 0 to 60 miles per hour acceleration time of a sedan is predicted to be 0.1252 seconds higher than that of an SUV.  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, the 0 to 60 miles per hour acceleration time of a sedan is predicted to be 0.1252 seconds higher than that of an SUV.  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, the 0 to 60 miles per hour acceleration time of a sedan is predicted to be 0.1252 seconds higher than that of an SUV.  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, the 0 to 60 miles per hour acceleration time of a sedan is predicted to be 0.1252 seconds higher than that of an SUV. The coefficients of partial determination (RYj2\left( R ^ { 2 }_{Y j} \right. . (All variables except j)\left. j \right) of each of the 5 predictors are, respectively, 0.0380,0.4376,0.0248,0.01880.0380,0.4376,0.0248,0.0188 , and 0.03120.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables XjX _ { j } as the dependent variable and all other XX variables as independent variables (Rj2)\left( R _ { j } ^ { 2 } \right) are, respectively, 0.7461,0.5676,0.6764,0.8582,0.66320.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, the 0 to 60 miles per hour acceleration time of a sedan is predicted to be 0.1252 seconds higher than that of an SUV.

(True/False)
4.8/5
(36)

The coefficient of multiple determination r²Y.₁₂

(Multiple Choice)
4.9/5
(28)

TABLE 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X₁ = % Attendance, X₂= Salaries and X₃= Spending: Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47  ANOVA \text { ANOVA } df SS MS Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153 -Referring to Table 14-15, you can conclude that instructional spending per pupil individually has no impact on the mean percentage of students passing the proficiency test, taking into account the effect of all the other independent variables, at a 10% level of significance based solely on the 95% confidence interval estimate for ??.

(True/False)
5.0/5
(39)

TABLE 14-7 The department head of the accounting department wanted to see if she could predict the GPA of students using the number of course units (credits) and total SAT scores of each. She takes a sample of students and generates the following Microsoft Excel output: SUMMARY OUTPUT SUMMARY OUTPUT Regression Statistics Multiple R 0.916 R Square 0.839 Adjusted R Square 0.732 Standard Error 0.24685 Observations 6 ANOVA df SS MS F Signif F Regression 2 0.95219 0.47610 7.813 0.0646 Residual 3 0.18281 0.06094 Total 5 1.13500 Coeff StdError t Stat p -value Intercept 4.593897 1.13374542 4.052 0.0271 Units -0.247270 0.06268485 -3.945 0.0290 SAT Total 0.001443 0.00101241 1.425 0.2494 -Referring to Table 14-7, the department head decided to construct a 95% confidence interval for β₁. The confidence interval is from ________ to ________.

(Short Answer)
4.9/5
(39)

TABLE 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT Regression Statistics Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50 ANOVA df SS MS F Signif F Regression 3605.7736 1201.9245 0.0000 Residual 1214.2264 26.3962 Total 49 4820.0000 Coeff StdError t Stat p -value Intercept -1.6335 5.8078 -0.281 0.7798 Income 0.4485 0.1137 3.9545 0.0003 Size 4.2615 0.8062 5.286 0.0001 School -0.6517 0.4319 -1.509 0.1383 -Referring to Table 14-4, the observed value of the F-statistic is missing from the printout. What are the degrees of freedom for this F-statistic?

(Multiple Choice)
4.8/5
(35)

From the coefficient of multiple determination, you cannot detect the strength of the relationship between Y and any individual independent variable.

(True/False)
4.8/5
(36)

TABLE 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X₁ = % Attendance, X₂= Salaries and X₃= Spending: Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47  ANOVA \text { ANOVA } df SS MS Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153 -Referring to Table 14-15, which of the following is the correct alternative hypothesis to test whether daily mean of the percentage of students attending class has any effect on percentage of students passing the proficiency test, taking into account the effect of all the other independent variables?

(Multiple Choice)
4.7/5
(39)

A regression had the following results: SST = 82.55, SSE = 29.85. It can be said that 73.4% of the variation in the dependent variable is explained by the independent variables in the regression.

(True/False)
4.9/5
(33)

TABLE 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X₁ = % Attendance, X₂= Salaries and X₃= Spending: Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47  ANOVA \text { ANOVA } df SS MS Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153 -Referring to Table 14-15, there is sufficient evidence that the percentage of students passing the proficiency test depends on at least one of the explanatory variables at a 5% level of significance.

(True/False)
4.9/5
(39)

TABLE 14-10 You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premiums depend very much on the age of the individual, the number of traffic tickets received by the individual, and the population density of the city in which the individual lives. You performed a regression analysis in Excel and obtained the following information:  Regression Analysis \text { Regression Analysis } Regression Statistics Multiple R 0.63 R Square 0.40 Adjusted R Square 0.23 Standard Error 50.00 Observations 15.00  ANOVA \text { ANOVA } df SS MS F Significance F Regression 3 5994.24 2.40 0.12 Residual 11 27496.82 Total 45479.54 Coefficients Standard Error t Stat P-value Lower 99.0\% Upper 99.0\% Intercept 123.80 48.71 2.54 0.03 -27.47 275.07 AGE -0.82 0.87 -0.95 0.36 -3.51 1.87 TICKETS 21.25 10.66 1.99 0.07 -11.86 54.37 DENSITY -3.14 6.46 -0.49 0.64 -23.19 16.91 -Referring to Table 14-10, the total degrees of freedom that are missing in the ANOVA table should be ________.

(Short Answer)
4.7/5
(36)

When an explanatory variable is dropped from a multiple regression model, the adjusted r² can increase.

(True/False)
4.9/5
(40)

TABLE 14-18 A logistic regression model was estimated in order to predict the probability that a randomly chosen university or college would be a private university using information on mean total Scholastic Aptitude Test score (SAT) at the university or college, the room and board expense measured in thousands of dollars (Room/Brd), and whether the TOEFL criterion is at least 550 (Toefl550 = 1 if yes, 0 otherwise.) The dependent variable, Y, is school type (Type = 1 if private and 0 otherwise). The Minitab output is given below: Logistic Regression Table Odds 95\% Predictor Coef SE Coef Ratio Lower Upper Constant -27.118 6.696 -4.05 0.000 SAT 0.015 0.004666 3.17 0.002 1.01 1.01 1.02 Toefl550 -0.390 0.9538 -0.41 0.682 0.68 0.10 4.39 Room/Brd 2.078 0.5076 4.09 0.000 7.99 2.95 21.60 Log-Likelihood =21.883= - 21.883 Test that all slopes are zero: G=62.083,DF=3,p\mathrm { G } = 62.083 , \mathrm { DF } = 3 , p -value =0.000= 0.000 Goodness-of-Fit Tests Method Chi-Square DF P Pearson 143.551 76 0.000 Deviance 43.767 76 0.999 Hosmer-Lemeshow 15.731 8 0.046 -Referring to Table 14-18, there is not enough evidence to conclude that Toefl500 makes a significant contribution to the model in the presence of the other independent variables at a 0.05 level of significance.

(True/False)
4.9/5
(41)

To explain personal consumption (CONS)measured in dollars, data is collected for INC: personal income in dollars CRDTLIM: $1 plus the credit limit in dollars available to the individual APR: mean annualized percentage interest rate for borrowing for the individual ADVT: per person advertising expenditure in dollars by manufacturers in the city where the individual lives SEX: gender of the individual; 1 if female, 0 if male A regression analysis was performed with CONS as the dependent variable and ln(CRDTLIM), ln(APR), ln(ADVT), and GENDER as the independent variables. The estimated model was Y = 2.28 - 0.29 1n(CRDTLIM)+ 5.77 1n(APR)+ 2.35 In(ADVT)+ 0.39 SEX What is the correct interpretation for the estimated coefficient for GENDER?

(Multiple Choice)
4.9/5
(22)

TABLE 14-1 A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X₁) and how he/she scored on a business aptitude test (X₂). A random sample of 8 employees provides the following: 1 100 10 7 2 90 3 10 3 80 8 9 4 70 5 4 5 60 5 8 6 50 7 5 7 40 1 4 8 30 1 1 -Referring to Table 14-1, for these data, what is the estimated coefficient for the variable representing scores on the aptitude test, b??

(Multiple Choice)
4.8/5
(37)

TABLE 14-10 You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premiums depend very much on the age of the individual, the number of traffic tickets received by the individual, and the population density of the city in which the individual lives. You performed a regression analysis in Excel and obtained the following information:  Regression Analysis \text { Regression Analysis } Regression Statistics Multiple R 0.63 R Square 0.40 Adjusted R Square 0.23 Standard Error 50.00 Observations 15.00  ANOVA \text { ANOVA } df SS MS F Significance F Regression 3 5994.24 2.40 0.12 Residual 11 27496.82 Total 45479.54 Coefficients Standard Error t Stat P-value Lower 99.0\% Upper 99.0\% Intercept 123.80 48.71 2.54 0.03 -27.47 275.07 AGE -0.82 0.87 -0.95 0.36 -3.51 1.87 TICKETS 21.25 10.66 1.99 0.07 -11.86 54.37 DENSITY -3.14 6.46 -0.49 0.64 -23.19 16.91 -Referring to Table 14-10, the standard error of the estimate is ________.

(Short Answer)
4.9/5
(29)

TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. Regression Statistics Multiple R 0.8013 R Square 0.6421 Adjusted R Square 0.6313 Standard Error 1.0507 Observations 171  ANOVA \text { ANOVA } df SS MS F Significance F Regression 5 326.8700 65.3740 59.2168 0.0000 Residual 165 182.1564 1.1040 Total 170 509.0263 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 12.8627 1.0927 11.7713 0.0000 10.7052 15.0202 Cargo Vol 0.0259 0.0102 2.5518 0.0116 0.0059 0.0460 HP -0.0200 0.0018 -11.3307 0.0000 -0.0235 -0.0165 MPG -0.0620 0.0303 -2.0464 0.0423 -0.1218 -0.0022 SUV 0.7679 0.4314 1.7802 0.0769 -0.0838 1.6196 Sedan 0.6427 0.2790 2.3034 0.0225 0.0918 1.1935 The various residual plots are as shown below.  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, what is the correct interpretation for the estimated coefficient for Cargo Vol?  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, what is the correct interpretation for the estimated coefficient for Cargo Vol?  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, what is the correct interpretation for the estimated coefficient for Cargo Vol?  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, what is the correct interpretation for the estimated coefficient for Cargo Vol?  TABLE 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{|lr|} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8013 \\ \hline \text { R Square } & 0.6421 \\ \hline \text { Adjusted R Square } & 0.6313 \\ \hline \text { Standard Error } & 1.0507 \\ \hline \text { Observations } & 171 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|lrrrrrr} \hline & d f & \text { SS } & \text { MS } &{\text { F }} &{\text { Significance F }} \\ \hline \text { Regression } & 5 & 326.8700 & 65.3740 & 59.2168 & 0.0000 \\ \hline \text { Residual } & 165 & 182.1564 & 1.1040 & & \\ \hline \text { Total } & 170 & 509.0263 & & & \\ \hline \end{array}    \begin{array}{|lr|rrr|r|r|} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 12.8627 & 1.0927 & 11.7713 & 0.0000 & 10.7052 & 15.0202 \\ \hline \text { Cargo Vol } & 0.0259 & 0.0102 & 2.5518 & 0.0116 & 0.0059 & 0.0460 \\ \hline \text { HP } & -0.0200 & 0.0018 & -11.3307 & 0.0000 & -0.0235 & -0.0165 \\ \hline \text { MPG } & -0.0620 & 0.0303 & -2.0464 & 0.0423 & -0.1218 & -0.0022 \\ \hline \text { SUV } & 0.7679 & 0.4314 & 1.7802 & 0.0769 & -0.0838 & 1.6196 \\ \hline \text { Sedan } & 0.6427 & 0.2790 & 2.3034 & 0.0225 & 0.0918 & 1.1935 \\ \hline \end{array}     The various residual plots are as shown below.                      The coefficients of partial determination  \left( R ^ { 2 }_{Y j} \right. . (All variables except  \left. j \right)  of each of the 5 predictors are, respectively,  0.0380,0.4376,0.0248,0.0188 , and  0.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables  X _ { j }  as the dependent variable and all other  X  variables as independent variables  \left( R _ { j } ^ { 2 } \right)  are, respectively,  0.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, what is the correct interpretation for the estimated coefficient for Cargo Vol? The coefficients of partial determination (RYj2\left( R ^ { 2 }_{Y j} \right. . (All variables except j)\left. j \right) of each of the 5 predictors are, respectively, 0.0380,0.4376,0.0248,0.01880.0380,0.4376,0.0248,0.0188 , and 0.03120.0312 . The coefficient of multiple determination for the regression model using each of the 5 variables XjX _ { j } as the dependent variable and all other XX variables as independent variables (Rj2)\left( R _ { j } ^ { 2 } \right) are, respectively, 0.7461,0.5676,0.6764,0.8582,0.66320.7461,0.5676,0.6764,0.8582,0.6632 . -Referring to 14-16, what is the correct interpretation for the estimated coefficient for Cargo Vol?

(Multiple Choice)
4.8/5
(32)

TABLE 14-8 A financial analyst wanted to examine the relationship between salary (in $1,000) and 4 variables: age (X₁ = Age), experience in the field (X₂ = Exper), number of degrees (X₃ = Degrees), and number of previous jobs in the field (X₄ = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output: SUMMARY OUTPUT Regression Statistics Multiple R 0.992 R Square 0.984 Adjusted R Square 0.979 Standard Error 2.26743 Observations 20 ANOVA df SS MS F Signif F Regression 4 4609.83164 1152.45791 224.160 0.0001 Residual 15 77.11836 5.14122 Total 19 4686.95000 Coeff StdError t Stat p -value Intercept -9.611198 2.77988638 -3.457 0.0035 Age 1.327695 0.11491930 11.553 0.0001 Exper -0.106705 0.14265559 -0.748 0.4660 Degrees 7.311332 0.80324187 9.102 0.0001 Prevjobs -0.504168 0.44771573 -1.126 0.2778 -Referring to Table 14-8, the analyst wants to use a t test to test for the significance of the coefficient of X₃. The value of the test statistic is ________.

(Short Answer)
4.8/5
(37)

TABLE 14-10 You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premiums depend very much on the age of the individual, the number of traffic tickets received by the individual, and the population density of the city in which the individual lives. You performed a regression analysis in Excel and obtained the following information:  Regression Analysis \text { Regression Analysis } Regression Statistics Multiple R 0.63 R Square 0.40 Adjusted R Square 0.23 Standard Error 50.00 Observations 15.00  ANOVA \text { ANOVA } df SS MS F Significance F Regression 3 5994.24 2.40 0.12 Residual 11 27496.82 Total 45479.54 Coefficients Standard Error t Stat P-value Lower 99.0\% Upper 99.0\% Intercept 123.80 48.71 2.54 0.03 -27.47 275.07 AGE -0.82 0.87 -0.95 0.36 -3.51 1.87 TICKETS 21.25 10.66 1.99 0.07 -11.86 54.37 DENSITY -3.14 6.46 -0.49 0.64 -23.19 16.91 -Referring to Table 14-10, the adjusted r² is ________.

(Short Answer)
4.9/5
(46)

TABLE 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X₁ = % Attendance, X₂= Salaries and X₃= Spending: Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47  ANOVA \text { ANOVA } df SS MS Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153 -Referring to Table 14-15, you can conclude that instructional spending per pupil has no impact on the mean percentage of students passing the proficiency test, taking into account the effect of all the other independent variables, at a 5% level of significance using the 95% confidence interval estimate for ??.

(True/False)
4.9/5
(43)

TABLE 14-7 The department head of the accounting department wanted to see if she could predict the GPA of students using the number of course units (credits) and total SAT scores of each. She takes a sample of students and generates the following Microsoft Excel output: SUMMARY OUTPUT SUMMARY OUTPUT Regression Statistics Multiple R 0.916 R Square 0.839 Adjusted R Square 0.732 Standard Error 0.24685 Observations 6 ANOVA df SS MS F Signif F Regression 2 0.95219 0.47610 7.813 0.0646 Residual 3 0.18281 0.06094 Total 5 1.13500 Coeff StdError t Stat p -value Intercept 4.593897 1.13374542 4.052 0.0271 Units -0.247270 0.06268485 -3.945 0.0290 SAT Total 0.001443 0.00101241 1.425 0.2494 -Referring to Table 14-7, the department head wants to use a t test to test for the significance of the coefficient of X₁. The p-value of the test is ________.

(Short Answer)
4.8/5
(31)
Showing 181 - 200 of 355
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)