Exam 14: Introduction to Multiple Regression

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

TABLE 14-13 An econometrician is interested in evaluating the relationship of demand for building materials to mortgage rates in Los Angeles and San Francisco. He believes that the appropriate model is Y = 10 + 5X₁ + 8X₂ where X₁ = mortgage rate in % X₂ = 1 if SF, 0 if LA Y = demand in $100 per capita -Referring to Table 14-13, the predicted demand in San Francisco when the mortgage rate is 10% is ________.

(Short Answer)
4.8/5
(36)

TABLE 14-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X₁) the amount of insulation in inches (X₂), the number of windows in the house (X₃), and the age of the furnace in years (X₄). Given below are the Excel outputs of two regression models. Model 1 Regression Statistics R Square 0.8080 Adjusted R Square 0.7568 Observations 20 ANOVA\mathrm{ANOVA} df SS MS F Significance F Regression 4 169503.4241 42375.86 15.7874 0.0000 Residual 15 40262.3259 2684.155 Total 19 209765.75 Coefficients Standard Error t Stat P-value Lower 90.0\% Upper 90.0\% Intercept 421.4277 77.8614 5.4125 0.0000 284.9327 557.9227 (Temperature) -4.5098 0.8129 -5.5476 0.0000 -5.9349 -3.0847 (Insulation) -14.9029 5.0508 -2.9505 0.0099 -23.7573 -6.0485 (Windows) 0.2151 4.8675 0.0442 0.9653 -8.3181 8.7484 (Furnace Age) 6.3780 4.1026 1.5546 0.1408 -0.8140 13.5702 Model 2 Regression Statistics R Square 0.7768 Adjusted R Square 0.7506 Observations 20  ANOVA \text { ANOVA } Significance df SS MS F F Regression 2 162958.2277 81479.11 29.5923 0.0000 Residual 17 46807.5222 2753.384 Total 19 209765.75 Coefficients Standard Error \ t Stat P-value Lower 95\% Upper 95\% Intercept 489.3227 43.9826 11.1253 0.0000 396.5273 582.1180 (Temperature) -5.1103 0.6951 -7.3515 0.0000 -6.5769 -3.6437 (Insulation) -14.7195 4.8864 -3.0123 0.0078 -25.0290 -4.4099 -Referring to Table 14-6, what is your decision and conclusion for the test H?: ?? = 0 vs H?: ?? < 0 at the ? = 0.01 level of significance using Model 1?

(Multiple Choice)
4.7/5
(27)

A regression had the following results: SST = 102.55, SSE = 82.04. It can be said that 90.0% of the variation in the dependent variable is explained by the independent variables in the regression.

(True/False)
4.9/5
(34)

TABLE 14-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service. A random sample of 30 home owners located in a suburban area near a large city was selected; 15 did not have a lawn service (code 0) and 15 had a lawn service (code 1). Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars), lawn size (Lawn Size, in thousands of square feet), attitude toward outdoor recreational activities (Atitude 0 = unfavorable, 1 = favorable), number of teenagers in the household (Teenager), and age of the head of the household (Age). The Minitab output is given below: Logistic Regression Table Odds 95\% CI Predictor Coef SE Coef Z P Ratio Lower Upper Constant -70.49 47.22 -1.49 0.135 Income 0.2868 0.1523 1.88 0.060 1.33 0.99 1.80 LawnSiz 1.0647 0.7472 1.42 0.154 2.90 0.67 12.54 Attitude -12.744 9.455 -1.35 0.178 0.00 0.00 326.06 Teenager -0.200 1.061 -0.19 0.850 0.82 0.10 6.56 Age 1.0792 0.8783 1.23 0.219 2.94 0.53 16.45 Log-Likelihood =4.890= - 4.890 Test that all slopes are zero: G=31.808,DF=5,p\mathrm { G } = 31.808 , \mathrm { DF } = 5 , p -value =0.000= 0.000 Goodness-of-Fit Tests Method Chi-Square DF Pearson 9.313 24 0.997 Deviance 9.780 24 0.995 Hosmer-Lemeshow 0.571 8 1.000 -Referring to Table 14-19, what should be the decision ('reject' or 'do not reject')on the null hypothesis when testing whether LawnSize makes a significant contribution to the model in the presence of the other independent variables at a 0.05 level of significance?

(Short Answer)
4.8/5
(45)

The slopes in a multiple regression model are called net regression coefficients.

(True/False)
4.9/5
(29)

TABLE 14-8 A financial analyst wanted to examine the relationship between salary (in $1,000) and 4 variables: age (X₁ = Age), experience in the field (X₂ = Exper), number of degrees (X₃ = Degrees), and number of previous jobs in the field (X₄ = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output: SUMMARY OUTPUT Regression Statistics Multiple R 0.992 R Square 0.984 Adjusted R Square 0.979 Standard Error 2.26743 Observations 20 ANOVA df SS MS F Signif F Regression 4 4609.83164 1152.45791 224.160 0.0001 Residual 15 77.11836 5.14122 Total 19 4686.95000 Coeff StdError t Stat p -value Intercept -9.611198 2.77988638 -3.457 0.0035 Age 1.327695 0.11491930 11.553 0.0001 Exper -0.106705 0.14265559 -0.748 0.4660 Degrees 7.311332 0.80324187 9.102 0.0001 Prevjobs -0.504168 0.44771573 -1.126 0.2778 -Referring to Table 14-8, the predicted salary for a 35-year-old person with 10 years of experience, 3 degrees, and 1 previous job is ________.

(Short Answer)
4.8/5
(37)

TABLE 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X₁ = % Attendance, X₂= Salaries and X₃= Spending: Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47  ANOVA \text { ANOVA } df SS MS Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153 -Referring to Table 14-15, the null hypothesis H?: = ?? = ?? = ?? = 0 implies that percentage of students passing the proficiency test is not affected by some of the explanatory variables.

(True/False)
4.8/5
(34)

TABLE 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT Regression Statistics Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50 ANOVA df SS MS F Signif F Regression 3605.7736 1201.9245 0.0000 Residual 1214.2264 26.3962 Total 49 4820.0000 Coeff StdError t Stat p -value Intercept -1.6335 5.8078 -0.281 0.7798 Income 0.4485 0.1137 3.9545 0.0003 Size 4.2615 0.8062 5.286 0.0001 School -0.6517 0.4319 -1.509 0.1383 -Referring to Table 14-4, what are the residual degrees of freedom that are missing from the output?

(Multiple Choice)
4.9/5
(42)

TABLE 14-18 A logistic regression model was estimated in order to predict the probability that a randomly chosen university or college would be a private university using information on mean total Scholastic Aptitude Test score (SAT) at the university or college, the room and board expense measured in thousands of dollars (Room/Brd), and whether the TOEFL criterion is at least 550 (Toefl550 = 1 if yes, 0 otherwise.) The dependent variable, Y, is school type (Type = 1 if private and 0 otherwise). The Minitab output is given below: Logistic Regression Table Odds 95\% Predictor Coef SE Coef Ratio Lower Upper Constant -27.118 6.696 -4.05 0.000 SAT 0.015 0.004666 3.17 0.002 1.01 1.01 1.02 Toefl550 -0.390 0.9538 -0.41 0.682 0.68 0.10 4.39 Room/Brd 2.078 0.5076 4.09 0.000 7.99 2.95 21.60 Log-Likelihood =21.883= - 21.883 Test that all slopes are zero: G=62.083,DF=3,p\mathrm { G } = 62.083 , \mathrm { DF } = 3 , p -value =0.000= 0.000 Goodness-of-Fit Tests Method Chi-Square DF P Pearson 143.551 76 0.000 Deviance 43.767 76 0.999 Hosmer-Lemeshow 15.731 8 0.046 -Referring to Table 14-18, what is the estimated odds ratio for a school with an mean SAT score of 1250, a TOEFL criterion that is at least 550, and the room and board expense of 5 thousand dollars?

(Short Answer)
4.8/5
(27)

TABLE 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X₁ = % Attendance, X₂= Salaries and X₃= Spending: Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47  ANOVA \text { ANOVA } df SS MS Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153 -Referring to Table 14-15, you can conclude that mean teacher salary has no impact on the mean percentage of students passing the proficiency test at a 5% level of significance using the 95% confidence interval estimate for ??.

(True/False)
4.8/5
(30)

TABLE 14-18 A logistic regression model was estimated in order to predict the probability that a randomly chosen university or college would be a private university using information on mean total Scholastic Aptitude Test score (SAT) at the university or college, the room and board expense measured in thousands of dollars (Room/Brd), and whether the TOEFL criterion is at least 550 (Toefl550 = 1 if yes, 0 otherwise.) The dependent variable, Y, is school type (Type = 1 if private and 0 otherwise). The Minitab output is given below: Logistic Regression Table Odds 95\% Predictor Coef SE Coef Ratio Lower Upper Constant -27.118 6.696 -4.05 0.000 SAT 0.015 0.004666 3.17 0.002 1.01 1.01 1.02 Toefl550 -0.390 0.9538 -0.41 0.682 0.68 0.10 4.39 Room/Brd 2.078 0.5076 4.09 0.000 7.99 2.95 21.60 Log-Likelihood =21.883= - 21.883 Test that all slopes are zero: G=62.083,DF=3,p\mathrm { G } = 62.083 , \mathrm { DF } = 3 , p -value =0.000= 0.000 Goodness-of-Fit Tests Method Chi-Square DF P Pearson 143.551 76 0.000 Deviance 43.767 76 0.999 Hosmer-Lemeshow 15.731 8 0.046 -Referring to Table 14-18, what is the p-value of the test statistic when testing whether Toefl500 makes a significant contribution to the model in the presence of the other independent variables?

(Short Answer)
4.7/5
(40)

TABLE 14-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service. A random sample of 30 home owners located in a suburban area near a large city was selected; 15 did not have a lawn service (code 0) and 15 had a lawn service (code 1). Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars), lawn size (Lawn Size, in thousands of square feet), attitude toward outdoor recreational activities (Atitude 0 = unfavorable, 1 = favorable), number of teenagers in the household (Teenager), and age of the head of the household (Age). The Minitab output is given below: Logistic Regression Table Odds 95\% CI Predictor Coef SE Coef Z P Ratio Lower Upper Constant -70.49 47.22 -1.49 0.135 Income 0.2868 0.1523 1.88 0.060 1.33 0.99 1.80 LawnSiz 1.0647 0.7472 1.42 0.154 2.90 0.67 12.54 Attitude -12.744 9.455 -1.35 0.178 0.00 0.00 326.06 Teenager -0.200 1.061 -0.19 0.850 0.82 0.10 6.56 Age 1.0792 0.8783 1.23 0.219 2.94 0.53 16.45 Log-Likelihood =4.890= - 4.890 Test that all slopes are zero: G=31.808,DF=5,p\mathrm { G } = 31.808 , \mathrm { DF } = 5 , p -value =0.000= 0.000 Goodness-of-Fit Tests Method Chi-Square DF Pearson 9.313 24 0.997 Deviance 9.780 24 0.995 Hosmer-Lemeshow 0.571 8 1.000 -Referring to Table 14-19, what is the estimated odds ratio for a 48-year-old home owner with a family income of $100,000, a lawn size of 5,000 square feet, a negative attitude toward outdoor recreation, and one teenager in the household?

(Short Answer)
5.0/5
(29)

TABLE 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1. The coefficients of partial determination ( 2 Yj. (Allvariables except j j ) ) of each of the 6 predictors are, respectively, 0.2807, 0.0386, 0.0317, 0.0141, 0.0958, and 0.1201. Regression Statistics Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square Standard 18.4861 Error 40 Observations  ANOVA \text { ANOVA } df SS MS F significance F Regression 6 11048.6415 1841.4402 5.3885 0.00057 Residual 33 11277.2586 341.7351 Total 39 22325.9 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 32.6595 23.18302 1.4088 0.1683 -14.5067 79.8257 Age 1.2915 0.3599 3.5883 0.0011 0.5592 2.0238 Edu -1.3537 1.1766 -1.1504 0.2582 -3.7476 1.0402 Job Yr 0.6171 0.5940 1.0389 0.3064 -0.5914 1.8257 Married -5.2189 7.6068 -0.6861 0.4974 -20.6950 10.2571 Head -14.2978 7.6479 -1.8695 0.0704 -29.8575 1.2618 Manager -24.8203 11.6932 -2.1226 0.0414 -48.6102 -1.0303 Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below: Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square Standard Error 18.8929 Observations 40  ANOVA \text { ANOVA } df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to Table 14-17 Model 1, ________ of the variation in the number of weeks a worker is unemployed due to a layoff can be explained by the number of years at the previous job while controlling for the other independent variables.

(Short Answer)
4.8/5
(30)

TABLE 14-3 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below. SUMMARY OUTPUT Regression Statistics Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10 ANOVA df SS MS F Signif F Regression 2 33.4163 16.7082 186.325 0.0001 Residual 7 0.6277 0.0897 Total 9 34.0440 Coeff StdError t Stat p -value Intercept -0.0861 0.5674 -0.152 0.8837 GDP 0.7654 0.0574 13.340 0.0001 Price -0.0006 0.0028 -0.219 0.8330 -Referring to Table 14-3, the p-value for the regression model as a whole is

(Multiple Choice)
4.8/5
(33)

TABLE 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1. The coefficients of partial determination ( 2 Yj. (Allvariables except j j ) ) of each of the 6 predictors are, respectively, 0.2807, 0.0386, 0.0317, 0.0141, 0.0958, and 0.1201. Regression Statistics Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square Standard 18.4861 Error 40 Observations  ANOVA \text { ANOVA } df SS MS F significance F Regression 6 11048.6415 1841.4402 5.3885 0.00057 Residual 33 11277.2586 341.7351 Total 39 22325.9 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 32.6595 23.18302 1.4088 0.1683 -14.5067 79.8257 Age 1.2915 0.3599 3.5883 0.0011 0.5592 2.0238 Edu -1.3537 1.1766 -1.1504 0.2582 -3.7476 1.0402 Job Yr 0.6171 0.5940 1.0389 0.3064 -0.5914 1.8257 Married -5.2189 7.6068 -0.6861 0.4974 -20.6950 10.2571 Head -14.2978 7.6479 -1.8695 0.0704 -29.8575 1.2618 Manager -24.8203 11.6932 -2.1226 0.0414 -48.6102 -1.0303 Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below: Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square Standard Error 18.8929 Observations 40  ANOVA \text { ANOVA } df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to Table 14-17 Model 1, ________ of the variation in the number of weeks a worker is unemployed due to a layoff can be explained by whether the worker is in a management position while controlling for the other independent variables.

(Short Answer)
4.9/5
(39)

TABLE 14-18 A logistic regression model was estimated in order to predict the probability that a randomly chosen university or college would be a private university using information on mean total Scholastic Aptitude Test score (SAT) at the university or college, the room and board expense measured in thousands of dollars (Room/Brd), and whether the TOEFL criterion is at least 550 (Toefl550 = 1 if yes, 0 otherwise.) The dependent variable, Y, is school type (Type = 1 if private and 0 otherwise). The Minitab output is given below: Logistic Regression Table Odds 95\% Predictor Coef SE Coef Ratio Lower Upper Constant -27.118 6.696 -4.05 0.000 SAT 0.015 0.004666 3.17 0.002 1.01 1.01 1.02 Toefl550 -0.390 0.9538 -0.41 0.682 0.68 0.10 4.39 Room/Brd 2.078 0.5076 4.09 0.000 7.99 2.95 21.60 Log-Likelihood =21.883= - 21.883 Test that all slopes are zero: G=62.083,DF=3,p\mathrm { G } = 62.083 , \mathrm { DF } = 3 , p -value =0.000= 0.000 Goodness-of-Fit Tests Method Chi-Square DF P Pearson 143.551 76 0.000 Deviance 43.767 76 0.999 Hosmer-Lemeshow 15.731 8 0.046 -Referring to Table 14-18, which of the following is the correct expression for the estimated model?

(Multiple Choice)
4.8/5
(40)

TABLE 14-11 A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in pounds). Two variables thought to affect weight-loss are client's length of time on the weight-loss program and time of session. These variables are described below: Y = Weight-loss (in pounds) X₁ = Length of time in weight-loss program (in months) X₂ = 1 if morning session, 0 if not X₃ = 1 if afternoon session, 0 if not (Base level = evening session) Data for 12 clients on a weight-loss program at the clinic were collected and used to fit the interaction model: Y = β₀ + β₁X₁ + β₂X₂ + β₃X₃ + β₄X₁X₂ + β₅X₁X₂ + ε Partial output from Microsoft Excel follows: Regression Statistics Multiple R 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12 ANOVA F=5.41118F = 5.41118 \quad Significance F=0.040201F = 0.040201 Coeff StdError t Stat p -value Intercept 0.089744 14.127 0.0060 0.9951 Length 6.22538 2.43473 2.54956 0.0479 Morn Ses 2.217272 22.1416 0.100141 0.9235 Aft Ses 11.8233 3.1545 3.558901 0.0165 Length*Morn Ses 0.77058 3.562 0.216334 0.8359 Length Aft Ses -0.54147 3.35988 -0.161158 0.8773 -Referring to Table 14-11, what is the experimental unit for this analysis?

(Multiple Choice)
4.9/5
(29)

TABLE 14-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service. A random sample of 30 home owners located in a suburban area near a large city was selected; 15 did not have a lawn service (code 0) and 15 had a lawn service (code 1). Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars), lawn size (Lawn Size, in thousands of square feet), attitude toward outdoor recreational activities (Atitude 0 = unfavorable, 1 = favorable), number of teenagers in the household (Teenager), and age of the head of the household (Age). The Minitab output is given below: Logistic Regression Table Odds 95\% CI Predictor Coef SE Coef Z P Ratio Lower Upper Constant -70.49 47.22 -1.49 0.135 Income 0.2868 0.1523 1.88 0.060 1.33 0.99 1.80 LawnSiz 1.0647 0.7472 1.42 0.154 2.90 0.67 12.54 Attitude -12.744 9.455 -1.35 0.178 0.00 0.00 326.06 Teenager -0.200 1.061 -0.19 0.850 0.82 0.10 6.56 Age 1.0792 0.8783 1.23 0.219 2.94 0.53 16.45 Log-Likelihood =4.890= - 4.890 Test that all slopes are zero: G=31.808,DF=5,p\mathrm { G } = 31.808 , \mathrm { DF } = 5 , p -value =0.000= 0.000 Goodness-of-Fit Tests Method Chi-Square DF Pearson 9.313 24 0.997 Deviance 9.780 24 0.995 Hosmer-Lemeshow 0.571 8 1.000 -Referring to Table 14-19, what is the p-value of the test statistic when testing whether Teenager makes a significant contribution to the model in the presence of the other independent variables?

(Short Answer)
4.7/5
(38)

TABLE 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X₁ = % Attendance, X₂= Salaries and X₃= Spending: Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47  ANOVA \text { ANOVA } df SS MS Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153 -Referring to Table 14-15, there is sufficient evidence that all of the explanatory variables are related to the percentage of students passing the proficiency test at a 5% level of significance.

(True/False)
4.9/5
(30)

TABLE 14-8 A financial analyst wanted to examine the relationship between salary (in $1,000) and 4 variables: age (X₁ = Age), experience in the field (X₂ = Exper), number of degrees (X₃ = Degrees), and number of previous jobs in the field (X₄ = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output: SUMMARY OUTPUT Regression Statistics Multiple R 0.992 R Square 0.984 Adjusted R Square 0.979 Standard Error 2.26743 Observations 20 ANOVA df SS MS F Signif F Regression 4 4609.83164 1152.45791 224.160 0.0001 Residual 15 77.11836 5.14122 Total 19 4686.95000 Coeff StdError t Stat p -value Intercept -9.611198 2.77988638 -3.457 0.0035 Age 1.327695 0.11491930 11.553 0.0001 Exper -0.106705 0.14265559 -0.748 0.4660 Degrees 7.311332 0.80324187 9.102 0.0001 Prevjobs -0.504168 0.44771573 -1.126 0.2778 -Referring to Table 14-8, the analyst wants to use a t test to test for the significance of the coefficient of X?. At a level of significance of 0.01, the department head would decide that ?? ? 0.

(True/False)
4.7/5
(26)
Showing 261 - 280 of 355
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)