Exam 9: Discrete Mathematics

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write the sum using summation notation, assuming the suggested pattern continues. - 36+49+64+81++n2+36 + 49 + 64 + 81 + \ldots + n ^ { 2 } + \ldots

(Multiple Choice)
4.8/5
(45)

Find the sum. - 12+22+32+42++8721 ^ { 2 } + 2 ^ { 2 } + 3 ^ { 2 } + 4 ^ { 2 } + \ldots + 87 ^ { 2 }

(Multiple Choice)
4.7/5
(43)

For the given statement Pn P_{n} , write the statements P1,Pk P_{1}, P_{k} , and Pk+1 P_{k+1} - 2+4+8++2n=2n+122 + 4 + 8 + \ldots + 2 n = 2^{ n + 1} - 2

(Essay)
4.8/5
(40)

State an explicit rule for the nth term of the recursively-defined sequence. - an=an110;a1=1a _ { n } = a _ { n - 1 } - 10 ; a _ { 1 } = 1

(Multiple Choice)
4.9/5
(36)

Tell whether permutations or combinations are being described. -4 musicians are selected to form a band.

(Multiple Choice)
4.8/5
(40)

Use mathematical induction to prove the statement is true for all positive integers n. - (112)(113)(11n+1)=1n+1\left( 1 - \frac { 1 } { 2 } \right) \left( 1 - \frac { 1 } { 3 } \right) \ldots \left( 1 - \frac { 1 } { n + 1 } \right) = \frac { 1 } { n + 1 }

(Essay)
4.8/5
(36)

Expand the binomial. - (2x+4)3( 2 x + 4 ) ^ { 3 }

(Multiple Choice)
4.8/5
(36)

Find a recursive rule for the nth term of the sequence. - 10,2,14,26,- 10,2,14,26 , \ldots

(Multiple Choice)
4.7/5
(33)

Find an explicit rule for the nth term of the sequence. -The second and fifth terms of a geometric sequence are 9 and 243 , respectively.

(Multiple Choice)
4.9/5
(29)

Solve. -A collection of dimes is arranged in a triangular array with 17 coins in the base row, 16 in the next, 15 in the next, and so forth with 1 dime in the last row. Find the value of the collection.

(Multiple Choice)
4.7/5
(35)

Evaluate. - 5P1{ } _ { 5 } \mathrm { P } _ { 1 }

(Multiple Choice)
4.8/5
(32)

Find a recursive rule for the nth term of the sequence. - 7,42,252,1512,- 7 , - 42 , - 252 , - 1512 , \ldots

(Multiple Choice)
4.9/5
(36)

Find the sum of the arithmetic sequence. -2, -4, 8, -16, 32

(Multiple Choice)
4.8/5
(36)

Determine whether the sequence converges or diverges. If it converges, give the limit. - 50,252,258,2532,50 , \frac { 25 } { 2 } , \frac { 25 } { 8 } , \frac { 25 } { 32 } , \ldots

(Multiple Choice)
4.8/5
(33)

Find the sum. - 14+16+18+20++31414 + 16 + 18 + 20 + \ldots + 314

(Multiple Choice)
4.9/5
(36)

Evaluate. - 11C7{ } _ { 11 } \mathrm { C } _ { 7 }

(Multiple Choice)
4.9/5
(36)

Use mathematical induction to prove the statement is true for all positive integers n. - 3+23+33++3n=3n(n+1)23 + 2 \cdot 3 + 3 \cdot 3 + \ldots + 3 n = \frac { 3 n ( n + 1 ) } { 2 }

(Short Answer)
4.8/5
(39)

Construct a graph for the first ten terms of the sequence. - an=nn1a _ { n } = \sqrt { n } - \sqrt { n - 1 }  Construct a graph for the first ten terms of the sequence. - a _ { n } = \sqrt { n } - \sqrt { n - 1 }

(Multiple Choice)
4.7/5
(29)

Solve. -A musician plans to perform 5 selections for a concert. If he can choose from 7 different selections, how many ways can he arrange his program?

(Multiple Choice)
4.7/5
(42)

Use mathematical induction to prove the statement is true for all positive integers n. - 5+517+5(17)2++5(17)n1=5(1(17)n)1175 + 5 \cdot \frac { 1 } { 7 } + 5 \cdot \left( \frac { 1 } { 7 } \right) ^ { 2 } + \ldots + 5 \cdot \left( \frac { 1 } { 7 } \right) ^ { n - 1 } = \frac { 5 \left( 1 - \left( \frac { 1 } { 7 } \right) ^ { n } \right) } { 1 - \frac { 1 } { 7 } }

(Essay)
4.8/5
(37)
Showing 61 - 80 of 154
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)