Exam 11: An Introduction to Calculus: Limits, Derivatives, and Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Match the function with the correct table values. - f(x)=x4x2f ( x ) = \frac { x - 4 } { \sqrt { x } - 2 }  Match the function with the correct table values. - f ( x ) = \frac { x - 4 } { \sqrt { x } - 2 }

Free
(Multiple Choice)
5.0/5
(36)
Correct Answer:
Verified

B

Match the function with the correct table values. - f(x)=x25f ( x ) = x ^ { 2 } - 5  Match the function with the correct table values. - f ( x ) = x ^ { 2 } - 5

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

A

Find the derivative of the function using the definition of derivative. - f(x)=x+4f ( x ) = \sqrt { x + 4 }

Free
(Multiple Choice)
4.9/5
(42)
Correct Answer:
Verified

B

Find the limit of the function by using direct substitution. - limx2(x2+8x2)\lim _ { x \rightarrow 2 } \left( x ^ { 2 } + 8 x - 2 \right)

(Multiple Choice)
4.8/5
(39)

Use NINT on a calculator to find the numerical integral of the function over the specified interval. - f(x)=2x2+6x+4;[3,3]f ( x ) = 2 x ^ { 2 } + 6 x + 4 ; [ - 3,3 ]

(Multiple Choice)
5.0/5
(27)

Estimate the slope of the tangent line at the indicated point. -Estimate the slope of the tangent line at the indicated point. -

(Multiple Choice)
4.9/5
(31)

Solve the problem. -The position of an object at time tt is given by s(t)s ( t ) . Find the instantaneous velocity at the indicated value of tt . s(t)=3t2+5t+7s ( t ) = 3 t ^ { 2 } + 5 t + 7 at t=4t = 4

(Multiple Choice)
4.7/5
(47)

Estimate the slope of the tangent line at the indicated point. -Estimate the slope of the tangent line at the indicated point. -

(Multiple Choice)
4.8/5
(39)

Find the indicated limit, if it exists. - limx0f(x),f(x)={4x7x<03xx0\lim _ { x \rightarrow 0 } f ( x ) , f ( x ) = \left\{ \begin{array} { l l } 4 x - 7 & x < 0 \\| 3 - x | & x \geq 0\end{array} \right.

(Multiple Choice)
4.9/5
(27)

Use the given graph to determine the limit, if it exists. -Use the given graph to determine the limit, if it exists. -    Use the given graph to determine the limit, if it exists. -

(Multiple Choice)
4.9/5
(28)

Solve the problem. -Estimate the "RRAM" area under the graph of the function above the xx -axis and under the graph of the function from x=0x = 0 to x=5x = 5 . Use 5 subintervals.  Solve the problem. -Estimate the RRAM area under the graph of the function above the  x -axis and under the graph of the function from  x = 0  to  x = 5 . Use 5 subintervals.

(Multiple Choice)
4.9/5
(28)

Find the definite integral by computing an area. - 26xdx\int _ { 2 } ^ { 6 } x d x

(Multiple Choice)
4.9/5
(39)

Find the indicated limit. - limx0tan2(x)x\lim _ { x \rightarrow 0 } \frac { \tan ^ { 2 } ( x ) } { x }

(Multiple Choice)
4.7/5
(37)

Use a graph of the function to find the derivative of the function at the given point, if it exists. - f(x)={7+xx2x4x>2f ( x ) = \left\{ \begin{array} { l l } 7 + x & x \leq 2 \\ - x - 4 & x > 2 \end{array} \quad \right. at x=2x = 2

(Multiple Choice)
4.9/5
(28)

Find the limit of the function algebraically. - limx10x2100x10\lim _ { x \rightarrow 10 } \frac { x ^ { 2 } - 100 } { x - 10 }

(Multiple Choice)
4.9/5
(36)

Determine the limit algebraically, if possible. - limx09tanx4x\lim _ { x \rightarrow 0 } \frac { 9 \tan x } { 4 x }

(Multiple Choice)
4.7/5
(37)

Find the indicated limit, if it exists. - limx4f(x),f(x)={x+1x<41xx4\lim _ { x \rightarrow 4 } f ( x ) , f ( x ) = \left\{ \begin{array} { l l } x + 1 & x < 4 \\1 - x & x \geq 4\end{array} \right.

(Multiple Choice)
4.7/5
(42)

Find the limit of the function by using direct substitution. - limx2πln(cosx)\lim _ { x \rightarrow 2 \pi } \ln ( \cos x )

(Multiple Choice)
4.8/5
(25)

Use NINT on a calculator to find the numerical integral of the function over the specified interval. - f(x)=x5;[0,1]f ( x ) = x ^ { 5 } ; [ 0,1 ]

(Multiple Choice)
4.8/5
(42)

Use NINT on a calculator to find the numerical integral of the function over the specified interval. - f(x)=11+9x;[0,9]f ( x ) = \frac { 1 } { 1 + 9 x } ; [ 0,9 ] Round to three decimal places.

(Multiple Choice)
4.9/5
(30)
Showing 1 - 20 of 167
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)