Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the fundamental identities to find the value of the trigonometric function. -Find sinθ\sin \theta if tanθ=512\tan \theta = - \frac { 5 } { 12 } and cosθ>0\cos \theta > 0

Free
(Multiple Choice)
4.8/5
(27)
Correct Answer:
Verified

B

Write the expression as the sine, cosine, or tangent of an angle. - tan46tan271+tan46tan27\frac { \tan 46 ^ { \circ } - \tan 27 ^ { \circ } } { 1 + \tan 46 ^ { \circ } \tan 27 ^ { \circ } }

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

A

Find all solutions to the equation. - cos2x+2cosx+1=0\cos ^ { 2 } x + 2 \cos x + 1 = 0

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

C

Find the exact value by using a half-angle identity. - tan7π8\tan \frac { 7 \pi } { 8 }

(Multiple Choice)
4.8/5
(37)

Simplify the expression. - 1sin2xsinxcscx\frac { 1 - \sin ^ { 2 } x } { \sin x - \csc x }

(Multiple Choice)
4.9/5
(29)

Prove the identity. - cos(x+π2)=sinx\cos \left( x + \frac { \pi } { 2 } \right) = - \sin x

(Essay)
4.9/5
(36)

Simplify the expression. - cosx1sinx+1sinxcosx\frac { \cos x } { 1 - \sin x } + \frac { 1 - \sin x } { \cos x }

(Multiple Choice)
4.7/5
(36)

Complete the identity. -The expression sinθcosθ+1+cotθ\frac { \sin \theta } { \cos \theta + 1 } + \cot \theta is to be the left hand side of an equation that is an identity. Which one of the following four expressions can be used as the right hand side of the equation to complete the identity?

(Multiple Choice)
4.7/5
(27)

Find an exact value. - sin19π12\sin \frac { 19 \pi } { 12 }

(Multiple Choice)
4.9/5
(33)

Use the fundamental identities to find the value of the trigonometric function. -Find tanθ\tan \theta if secθ=265\sec \theta = \frac { \sqrt { 26 } } { 5 } and sinθ<0\sin \theta < 0

(Multiple Choice)
4.9/5
(32)

Determine if the following is an identity. - cos2xsin2x=12sin2x\cos ^ { 2 } x - \sin ^ { 2 } x = 1 - 2 \sin ^ { 2 } x

(Multiple Choice)
4.9/5
(44)

Prove the identity. - cot3x=cotx(csc2x1)\cot ^ { 3 } x = \cot x \left( \csc ^ { 2 } x - 1 \right)

(Essay)
4.9/5
(29)

Find all solutions to the equation. - sin2x+sinx=0\sin ^ { 2 } x + \sin x = 0

(Multiple Choice)
4.8/5
(38)

Two triangles can be formed using the given measurements. Solve both triangles. - B=45,a=14, b=10\mathrm { B } = 45 ^ { \circ } , \mathrm { a } = 14 , \mathrm {~b} = 10

(Multiple Choice)
4.8/5
(32)

Prove the identity. - (sinx)(tanxcosxcotxcosx)=12cos2x( \sin x ) ( \tan x \cos x - \cot x \cos x ) = 1 - 2 \cos ^ { 2 } x

(Essay)
4.7/5
(40)

Prove the identity. - tant1cott+1+cotttant=tan2t+2csc2ttant1\frac { \tan t } { 1 - \cot t } + \frac { 1 + \cot t } { \tan t } = \frac { \tan ^ { 2 } t + 2 - \csc ^ { 2 } t } { \tan t - 1 }

(Essay)
4.8/5
(34)

Find an exact value. - cos19π12\cos \frac { 19 \pi } { 12 }

(Multiple Choice)
4.9/5
(31)

Prove the identity. -sin 4u = 2 sin 2u cos 2u

(Essay)
4.9/5
(28)

The given measurements may or may not determine a triangle. If not, then state that no triangle is formed. If a triangle is formed, then use the Law of Sines to solve the triangle, if it is possible, or state that the Law of Sines cannot be used. -The given measurements may or may not determine a triangle. If not, then state that no triangle is formed. If a triangle is formed, then use the Law of Sines to solve the triangle, if it is possible, or state that the Law of Sines cannot be used. -

(Multiple Choice)
4.8/5
(33)

The given measurements may or may not determine a triangle. If not, then state that no triangle is formed. If a triangle is formed, then use the Law of Sines to solve the triangle, if it is possible, or state that the Law of Sines cannot be used. - B=147,c=7, b=11\mathrm { B } = 147 ^ { \circ } , \mathrm { c } = 7 , \mathrm {~b} = 11

(Multiple Choice)
4.9/5
(30)
Showing 1 - 20 of 313
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)