Exam 9: Discrete Mathematics

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write out the first five terms of the sequence. - an=n6a _ { n } = n - 6

(Multiple Choice)
4.8/5
(34)

State an explicit rule for the nth term of the recursively-defined sequence. - an=an1+8;a1=1\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } - 1 } + 8 ; \mathrm { a } _ { 1 } = 1

(Multiple Choice)
4.9/5
(33)

Find the sum of the first n terms of the sequence. - 25,31,37,43,;n=1025,31,37,43 , \ldots ; n = 10

(Multiple Choice)
4.8/5
(32)

Determine whether the sequence converges or diverges. If it converges, give the limit. - 36,6,1,16,36 , - 6,1 , - \frac { 1 } { 6 } , \ldots

(Multiple Choice)
4.8/5
(43)

Write the sum using summation notation, assuming the suggested pattern continues. - 9+11+13+15++(2n+1)9 + 11 + 13 + 15 + \ldots + ( 2 n + 1 ) \ldots

(Multiple Choice)
4.8/5
(31)

Write the sum using summation notation, assuming the suggested pattern continues. - 1000+1331+1728+2197++n3+1000 + 1331 + 1728 + 2197 + \ldots + n ^ { 3 } + \ldots

(Multiple Choice)
4.8/5
(47)

Find the sum. - k=1n(k2+5)\sum _ { k = 1 } ^ { n } \left( k ^ { 2 } + 5 \right)

(Multiple Choice)
4.8/5
(42)

Expand the binomial. - (x3+2)5\left( x ^ { - 3 } + 2 \right) ^ { 5 }

(Multiple Choice)
4.9/5
(41)

Find the coefficient of the given term in the binomial expansion. - x6x ^ { 6 } term, (x3)15( x - 3 ) ^ { 15 }

(Multiple Choice)
4.8/5
(34)

Solve. -In how many ways can the letters in the word PAYMENT be arranged if the letters are taken 6 at a time?

(Multiple Choice)
4.9/5
(42)

Find the sum of the first n terms of the sequence. - 1,3,9,;n=12- 1 , - 3 , - 9 , \ldots ; \mathrm { n } = 12

(Multiple Choice)
4.9/5
(33)

Use mathematical induction to prove the statement is true for all positive integers n. - (32)n=32n\left( 3 ^ { 2 } \right) ^ { n } = 3 ^ { 2 n }

(Essay)
4.7/5
(32)

Find an explicit rule for the nth term of the arithmetic sequence. - 1,3,5,7,1,3,5,7 , \ldots

(Multiple Choice)
4.7/5
(30)

Use mathematical induction to prove the statement is true for all positive integers n. - 12+42+72++(3n2)2=n(6n23n1)21 ^ { 2 } + 4 ^ { 2 } + 7 ^ { 2 } + \ldots + ( 3 n - 2 ) ^ { 2 } = \frac { n \left( 6 n ^ { 2 } - 3 n - 1 \right) } { 2 }

(Essay)
4.9/5
(31)

Find the sum. - k=1n(k2+9k+20)\sum _ { k = 1 } ^ { n } \left( k ^ { 2 } + 9 k + 20 \right)

(Multiple Choice)
4.8/5
(41)

Express the rational number as a fraction of integers. - 0.01311311310.0131131131 \ldots

(Multiple Choice)
4.9/5
(36)

Find a recursive rule for the nth term of the sequence. - 2,8,32,128,2 , - 8,32 , - 128 , \ldots

(Multiple Choice)
4.9/5
(39)

Evaluate. - (1212)\left( \begin{array} { l } 12 \\ 12 \end{array} \right)

(Multiple Choice)
5.0/5
(29)

Evaluate. - (2962)\left( \begin{array} { c } 296 \\ 2 \end{array} \right)

(Multiple Choice)
4.7/5
(40)

Solve. -A certain radioactive isotope has a half-life of 2 days. If one is to make a table showing the half-life decay of a sample of this isotope from 32 grams to 1 gram; list the time (in days, starting with t=0t = 0 ) in the first column and the mass remaining (in grams) in the second column, which type of sequence is used in the first column and which type of sequence is used in the second column?

(Multiple Choice)
4.8/5
(38)
Showing 81 - 100 of 154
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)