Exam 9: Discrete Mathematics

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find a recursive rule for the nth term of the sequence. - 5,11,17,23,5,11,17,23 , \ldots

(Multiple Choice)
4.8/5
(40)

Expand the binomial. - (2x+1)4( 2 x + 1 ) ^ { 4 }

(Multiple Choice)
4.8/5
(39)

Find the coefficient of the given term in the binomial expansion. - x4y8x ^ { 4 } y ^ { 8 } term, (x+y)12( x + y ) ^ { 12 }

(Multiple Choice)
4.9/5
(44)

For the given statement Pn P_{n} , write the statements P1,Pk P_{1}, P_{k} , and Pk+1 P_{k+1} - 12+22+32++n2=n(n+1)(2n+1)61 ^ { 2 } + 2 ^ { 2 } + 3 ^ { 2 } + \ldots + n ^ { 2 } = \frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 }

(Essay)
4.8/5
(36)

Solve. -How many different three-digit numbers can be written using digits from the set {5, 6, 7, 8, 9} without any repeating digits?

(Multiple Choice)
4.7/5
(36)

Find the coefficient of the given term in the binomial expansion. - x4x ^ { 4 } term, (x2)11( x - 2 ) ^ { 11 }

(Multiple Choice)
4.9/5
(36)

Expand the binomial. - (xy)4( \sqrt { x } - \sqrt { y } ) ^ { 4 }

(Multiple Choice)
4.9/5
(35)

Find the sum. - k=1n(k3+k2)\sum _ { k = 1 } ^ { n } \left( k ^ { 3 } + k ^ { 2 } \right)

(Multiple Choice)
4.8/5
(38)

Determine whether the infinite geometric series converges. If the series converges, determine the limit. - 488+4329+48 - 8 + \frac { 4 } { 3 } - \frac { 2 } { 9 } + \ldots

(Multiple Choice)
4.8/5
(34)

Find the sum of the first n terms of the sequence. -10, 2, -6, -14, . . . ; n = 12

(Multiple Choice)
4.8/5
(32)

Find an explicit rule for the nth term of the sequence. - 3,12,48,192,3 , - 12,48 , - 192 , \ldots

(Multiple Choice)
4.9/5
(35)

Evaluate. - (3900)\left( \begin{array} { c } 390 \\ 0 \end{array} \right)

(Multiple Choice)
4.9/5
(39)

In how many ways can you answer the questions on an exam that consists of 8 multiple choice questions, each of which has 4 answer choices, followed by 5 true-false questions?

(Multiple Choice)
4.9/5
(33)

Find the sum of the arithmetic sequence. - 13,23,43,83,163\frac { 1 } { 3 } , \frac { 2 } { 3 } , \frac { 4 } { 3 } , \frac { 8 } { 3 } , \frac { 16 } { 3 }

(Multiple Choice)
4.9/5
(34)

Write the sum using summation notation, assuming the suggested pattern continues. - 1062+2++50- 10 - 6 - 2 + 2 + \ldots + 50

(Multiple Choice)
4.8/5
(31)

Find an explicit rule for the nth term of the arithmetic sequence. - 16,25,34,43,16,25,34,43 , \ldots

(Multiple Choice)
4.9/5
(40)

Construct a graph for the first ten terms of the sequence. - an=(12+1n)na _ { n } = \left( \frac { 1 } { 2 } + \frac { 1 } { n } \right) ^ { n }  Construct a graph for the first ten terms of the sequence. - a _ { n } = \left( \frac { 1 } { 2 } + \frac { 1 } { n } \right) ^ { n }

(Multiple Choice)
4.7/5
(48)

Find a recursive rule for the nth term of the sequence. - 7,3,13,23,- 7,3,13,23 , \ldots

(Multiple Choice)
4.8/5
(36)

Evaluate. - (73)\left( \begin{array} { l } 7 \\ 3 \end{array} \right)

(Multiple Choice)
4.8/5
(40)

Use mathematical induction to prove the statement is true for all positive integers n. -6 + 12 + 18 + ... + 6n = 3n(n + 1)

(Essay)
4.7/5
(36)
Showing 101 - 120 of 154
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)