Exam 8: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use a trigonometric substitution to evaluate the integral. - 01exdx25e2x\int _ { 0 } ^ { 1 } \frac { e ^ { x } d x } { 25 - e ^ { 2 x } }

(Multiple Choice)
4.9/5
(35)

Evaluate the integral by using a substitution prior to integration by parts. - 12e7x+9dx\int \frac { 1 } { 2 } \mathrm { e } \sqrt { 7 x + 9 } \mathrm { dx }

(Multiple Choice)
4.9/5
(39)

Evaluate the integral. The integral may not require integration by parts. - x4ex5dx\int x ^ { 4 } e ^ { x ^ { 5 } } d x

(Multiple Choice)
4.8/5
(39)

Integrate the function. - dx(x225)3/2,x>5\int \frac { d x } { \left( x ^ { 2 } - 25 \right) ^ { 3 / 2 } } , x > 5

(Multiple Choice)
4.9/5
(41)

Evaluate the integral. - 0π1cos2xdx\int _ { 0 } ^ { \pi } \sqrt { 1 - \cos ^ { 2 } x } d x

(Multiple Choice)
4.9/5
(37)

Evaluate the integral. - y2sin4ydy\int y ^ { 2 } \sin 4 y d y

(Multiple Choice)
4.9/5
(39)

Integrate the function. - dx9x2121,x>113\int \frac { \mathrm { dx } } { \sqrt { 9 \mathrm { x } ^ { 2 } - 121 } } , x > \frac { 11 } { 3 }

(Multiple Choice)
4.9/5
(39)

Evaluate the integral. - (7x+2)e4xdx\int ( 7 x + 2 ) e ^ { - 4 x } d x

(Multiple Choice)
5.0/5
(49)

Solve the problem. -The voltage v\mathrm { v } (in volts) induced in a tape head is given by v=t2e3t\mathrm { v } = \mathrm { t } ^ { 2 } \mathrm { e } ^ { 3 \mathrm { t } } , where tt is the time (in seconds). Find the average value of vv over the interval from t=0t = 0 to t=2t = 2 . Round to the nearest volt.

(Multiple Choice)
5.0/5
(39)

Use integration by parts to establish a reduction formula for the integral. - cscnxdx,n1\int \csc ^ { n } x d x , n \neq 1

(Multiple Choice)
4.8/5
(30)

Evaluate the integral. - 0excos2xdx\int _ { 0 } ^ { \infty } e ^ { - x } \cos 2 x d x

(Multiple Choice)
4.9/5
(46)

Integrate the function. - 01dx64x2\int _ { 0 } ^ { 1 } \frac { d x } { \sqrt { 64 - x ^ { 2 } } }

(Multiple Choice)
4.9/5
(38)

Evaluate the integral by using a substitution prior to integration by parts. - x2xdx\int x \sqrt { 2 - x } d x

(Multiple Choice)
4.9/5
(53)

Evaluate the integral. - 0π/6sin36xdx\int _ { 0 } ^ { \pi / 6 } \sin ^ { 3 } 6 x d x

(Multiple Choice)
4.9/5
(38)

Evaluate the integral. - π/15π/15sec35xdx\int _ { - \pi / 15 } ^ { \pi / 15 } \sec ^ { 3 } 5 x d x Give your answer in exact form.

(Multiple Choice)
4.8/5
(38)

Find the volume of the solid generated by revolving the region in the first quadrant bounded by the xx -axis and the curve y=sin8x,0xπ/8y = \sin 8 x , 0 \leq x \leq \pi / 8 about the line x=π/8x = \pi / 8 .

(Multiple Choice)
5.0/5
(45)

Find the area of the region enclosed by y=5xsinxy = 5 x \sin x and the xx -axis for 0xπ0 \leq x \leq \pi .

(Multiple Choice)
4.9/5
(32)

Integrate the function. - x216xdx\int \frac { \sqrt { x ^ { 2 } - 16 } } { x } d x

(Multiple Choice)
4.8/5
(44)

Evaluate the integral. - tan46tdt\int \tan ^ { 4 } 6 t d t

(Multiple Choice)
4.7/5
(35)

Evaluate the integral. - 4cos46xdx\int 4 \cos ^ { 4 } 6 x d x

(Multiple Choice)
4.9/5
(37)
Showing 61 - 80 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)