Exam 8: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate the integral. - π/12π/2(1cos4x)cos2xdx\int _ { \pi / 12 } ^ { \pi / 2 } ( 1 - \cos 4 x ) \cos 2 x d x

(Multiple Choice)
4.9/5
(43)

Integrate the function. - 0281dx(81x2)3/2\int _ { 0 } ^ { 2 } \frac { 81 d x } { \left( 81 - x ^ { 2 } \right) ^ { 3 / 2 } }

(Multiple Choice)
4.8/5
(31)

Evaluate the integral. - 8xcos2xdx\int - 8 x \cos 2 x d x

(Multiple Choice)
4.8/5
(35)

Evaluate the integral. - 13ln4xdx\int _ { 1 } ^ { 3 } \ln 4 x d x

(Multiple Choice)
4.8/5
(39)

Evaluate the integral. - x3cos3xdx\int x ^ { 3 } \cos 3 x d x

(Multiple Choice)
4.8/5
(26)

Evaluate the integral. - 15xcos12xdx\int 15 x \cos \frac { 1 } { 2 } x d x

(Multiple Choice)
4.8/5
(34)

Integrate the function. - dx(x2+4)3/2\int \frac { d x } { \left( x ^ { 2 } + 4 \right) ^ { 3 / 2 } }

(Multiple Choice)
4.8/5
(34)

Evaluate the integral by using a substitution prior to integration by parts. - x2x+5dx\int x ^ { 2 } \sqrt { x + 5 } d x

(Multiple Choice)
4.9/5
(37)

Evaluate the integral by using a substitution prior to integration by parts. - x2x2+21dx\int \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } + 21 } } d x

(Multiple Choice)
4.9/5
(42)

Use integration by parts to establish a reduction formula for the integral. - tannxdx,n1\int \tan ^ { \mathrm { n } } \mathrm { xdx } , \mathrm { n } \neq 1

(Multiple Choice)
4.8/5
(46)

Integrate the function. - 9dx3+x2\int \frac { 9 \mathrm { dx } } { \sqrt { 3 + \mathrm { x } ^ { 2 } } }

(Multiple Choice)
4.9/5
(40)

Use various trigonometric identities to simplify the expression then integrate. - cos6θsin2θdθ\int \cos ^ { 6 } \theta \sin 2 \theta d \theta

(Multiple Choice)
4.8/5
(36)

Use any method to evaluate the integral. - 6csc3xtanxdx\int \frac { 6 \csc ^ { 3 } x } { \tan x } d x

(Multiple Choice)
4.8/5
(29)

Evaluate the integral. - π/8π/8tan42tdt\int _ { - \pi / 8 } ^ { \pi / 8 } \tan ^ { 4 } 2 \mathrm { tdt }

(Multiple Choice)
4.8/5
(34)

Evaluate the integral by using a substitution prior to integration by parts. - ln(10x+10x2)dx\int \ln \left( 10 x + 10 x ^ { 2 } \right) d x

(Multiple Choice)
4.9/5
(38)

Evaluate the integral. - csc36tdt\int \csc ^ { 3 } 6 t d t

(Multiple Choice)
4.8/5
(30)

Use a trigonometric substitution to evaluate the integral. - 0ln3etdt16+e2t\int _ { 0 } ^ { \ln 3 } \frac { e ^ { t } d t } { 16 + e ^ { 2 t } }

(Multiple Choice)
4.9/5
(38)

Evaluate the integral. -Use the formula f1(x)dx=xf1(x)x(ddxf1(x))dx\int \mathrm { f } ^ { - 1 } ( \mathrm { x } ) \mathrm { dx } = \mathrm { xf } ^ { - 1 } ( \mathrm { x } ) - \int x \left( \frac { \mathrm { d } } { \mathrm { dx } } \mathrm { f } ^ { - 1 } ( \mathrm { x } ) \right) \mathrm { dx } to evaluate the integral. sin1xdx\int \sin ^ { - 1 } x d x

(Multiple Choice)
4.8/5
(38)

Evaluate the integral. - 03x4ln6xdx\int _ { 0 } ^ { 3 } x ^ { 4 } \ln 6 x d x

(Multiple Choice)
4.8/5
(39)

Integrate the function. - dxx2x236,x>6\int \frac { d x } { x ^ { 2 } \sqrt { x ^ { 2 } - 36 } } , x > 6

(Multiple Choice)
4.8/5
(46)
Showing 81 - 100 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)