Exam 8: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y=exy = e ^ { x } , and the line x=ln2x = \ln 2 about the line x=ln2x = \ln 2 .

Free
(Multiple Choice)
4.7/5
(46)
Correct Answer:
Verified

A

Integrate the function. - 40dxx2x2+64\int \frac { 40 d x } { x ^ { 2 } \sqrt { x ^ { 2 } + 64 } }

Free
(Multiple Choice)
4.7/5
(32)
Correct Answer:
Verified

A

Integrate the function. - 36x2dx\int \sqrt { 36 - x ^ { 2 } } d x

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

C

Use integration by parts to establish a reduction formula for the integral. - xnexdx\int x ^ { n } e ^ { x } d x

(Multiple Choice)
4.7/5
(38)

Integrate the function. - x2+95x2dx\int \frac { \sqrt { x ^ { 2 } + 9 } } { 5 x ^ { 2 } } d x

(Multiple Choice)
4.8/5
(40)

Evaluate the integral. - sin7xcos4xdx\int \sin 7 x \cos 4 x d x

(Multiple Choice)
4.9/5
(34)

Find the volume of the solid generated by revolving the region in the first quadrant bounded by the xx -axis and the curve y=xcosx,0xπ/2y = x \cos x , 0 \leq x \leq \pi / 2 about the yy -axis.

(Multiple Choice)
4.8/5
(32)

Use integration by parts to establish a reduction formula for the integral. - sinnxdx\int \sin ^ { n } x d x

(Multiple Choice)
4.7/5
(38)

Evaluate the integral. -Use the formula f1(x)dx=xf1(x)f(y)dy,y=f1(x)\int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int f ( y ) d y , y = f ^ { - 1 } ( x ) to evaluate the integral. cot1xdx\int \cot ^ { - 1 } x d x

(Multiple Choice)
4.7/5
(36)

Evaluate the integral. -Use the formula f1(x)dx=xf1(x)x(ddxf1(x))dx\int \mathrm { f } ^ { - 1 } ( \mathrm { x } ) \mathrm { dx } = \mathrm { xf } ^ { - 1 } ( \mathrm { x } ) - \int \mathrm { x } \left( \frac { \mathrm { d } } { \mathrm { dx } } \mathrm { f } ^ { - 1 } ( \mathrm { x } ) \right) \mathrm { dx } to evaluate the integral. cot1xdx\int \cot ^ { - 1 } x d x

(Multiple Choice)
4.9/5
(37)

Solve the problem. -The rate of water usage for a business, in gallons per hour, is given by W(t)=16tetW ( t ) = 16 t e ^ { - t } , where tt is the number of hours since midnight. Find the average rate of water usage over the interval 0t50 \leq t \leq 5 .

(Multiple Choice)
4.9/5
(36)

Evaluate the integral. - π/24π/12cot46tdt\int _ { \pi / 24 } ^ { \pi / 12 } \cot ^ { 4 } 6 t d t

(Multiple Choice)
4.9/5
(38)

Evaluate the integral. - cos7xcos3xdx\int \cos 7 x \cos 3 x d x

(Multiple Choice)
4.8/5
(37)

Use integration by parts to establish a reduction formula for the integral. - xnex2dx\int x ^ { n } e ^ { - x ^ { 2 } } d x

(Multiple Choice)
4.7/5
(34)

Evaluate the integral. - π/3π/21+cosxdx\int _ { \pi / 3 } ^ { \pi / 2 } \sqrt { 1 + \cos x } d x

(Multiple Choice)
4.8/5
(39)

Evaluate the integral. - sec39xdx\int \sec ^ { 3 } 9 x d x

(Multiple Choice)
4.7/5
(36)

Evaluate the integral. - 01/23sin42πxdx\int _ { 0 } ^ { 1 / 2 } 3 \sin ^ { 4 } 2 \pi x d x

(Multiple Choice)
4.7/5
(42)

Use any method to evaluate the integral. - tan2xcscxdx\int \frac { \tan ^ { 2 } x } { \csc x } d x

(Multiple Choice)
4.8/5
(38)

Evaluate the integral. - π/2π/2cos55xdx\int _ { - \pi / 2 } ^ { \pi / 2 } \cos ^ { 5 } 5 x d x

(Multiple Choice)
4.8/5
(36)

Find the area between y=lnxy = \ln x and the xx -axis from x=1x = 1 to x=5x = 5 .

(Multiple Choice)
4.8/5
(34)
Showing 1 - 20 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)