Exam 8: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate the integral by using a substitution prior to integration by parts. - 01xx+1dx\int _ { 0 } ^ { 1 } \frac { x } { \sqrt { x + 1 } } d x

(Multiple Choice)
4.8/5
(33)

Evaluate the integral. - 2xexdx\int 2 x e ^ { x } d x

(Multiple Choice)
4.9/5
(37)

Find the volume of the solid generated by revolving the region bounded by the curve y=lnxy = \ln x , the xx -axis, and the vertical line x=e2\mathrm { x } = \mathrm { e } ^ { 2 } about the x\mathrm { x } -axis.

(Multiple Choice)
4.8/5
(45)

Evaluate the integral. - 01/4ytan14ydy\int _ { 0 } ^ { 1 / 4 } y \tan ^ { - 1 } 4 y \mathrm { dy } \quad (Give your answer in exact form.)

(Multiple Choice)
4.9/5
(34)

Integrate the function. - (49t2)3/2t6dt\int \frac { \left( 49 - t ^ { 2 } \right) ^ { 3 / 2 } } { t ^ { 6 } } d t

(Multiple Choice)
4.9/5
(31)

Evaluate the integral. - cos1xdx\int \cos ^ { - 1 } x d x

(Multiple Choice)
4.9/5
(34)

Integrate the function. - dx(25x2+1)2\int \frac { d x } { \left( 25 x ^ { 2 } + 1 \right) ^ { 2 } }

(Multiple Choice)
4.7/5
(33)

Use integration by parts to establish a reduction formula for the integral. - (lnax)ndx\int ( \ln a x ) ^ { n } d x

(Multiple Choice)
4.9/5
(46)

Solve the problem. -Find the length of the curve y=ln(sinx),π/3xπ/2y = \ln ( \sin x ) , \pi / 3 \leq x \leq \pi / 2

(Multiple Choice)
4.8/5
(42)

Evaluate the integral. - 0π/2cos23xsin33xdx\int _ { 0 } ^ { \pi / 2 } \cos ^ { 2 } 3 x \sin ^ { 3 } 3 x d x

(Multiple Choice)
4.7/5
(42)

Evaluate the integral. - 0π/2sin4tsin3tdt\int _ { 0 } ^ { \pi / 2 } \sin 4 t \sin 3 t d t

(Multiple Choice)
4.7/5
(33)

Integrate the function. - dxx36x249\int \frac { d x } { x \sqrt { 36 x ^ { 2 } - 49 } }

(Multiple Choice)
4.7/5
(33)

Evaluate the integral. -Use the formula f1(x)dx=xf1(x)f(y)dy,y=f1(x)\int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int f ( y ) d y , y = f ^ { - 1 } ( x ) to evaluate the integral. cos1xdx\int \cos ^ { - 1 } x d x

(Multiple Choice)
4.7/5
(39)

Use integration by parts to establish a reduction formula for the integral. - secnxdx,n1\int \sec ^ { n } x d x , n \neq 1

(Multiple Choice)
4.9/5
(40)

Use various trigonometric identities to simplify the expression then integrate. - sinθcosθcos5θdθ\int \sin \theta \cos \theta \cos 5 \theta d \theta

(Multiple Choice)
4.8/5
(35)

Find the area between y=(x3)exy = ( x - 3 ) e ^ { x } and the xx -axis from x=3x = 3 to x=6x = 6 .

(Multiple Choice)
4.9/5
(32)

Evaluate the integral. - x3ln4xdx\int x ^ { 3 } \ln 4 x d x

(Multiple Choice)
4.9/5
(36)

Evaluate the integral. - y3e3ydy\int y ^ { 3 } e ^ { - 3 y } d y

(Multiple Choice)
4.9/5
(39)

Find the volume of the solid generated by revolving the region bounded by the curve y=2cosxy = 2 \cos x and the xx -axis, π2x3π2\frac { \pi } { 2 } \leq x \leq \frac { 3 \pi } { 2 } , about the xx -axis.

(Multiple Choice)
4.7/5
(37)

Find the volume of the solid generated by revolving the region in the first quadrant bounded by y=exy = e ^ { x } and the xx -axis, from x=0x = 0 to x=ln3x = \ln 3 , about the yy -axis.

(Multiple Choice)
4.7/5
(33)
Showing 21 - 40 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)