Exam 4: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. - f(x)=tan1x,[33,33]f ( x ) = \tan ^ { - 1 } x , \left[ - \frac { \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } \right] \quad Round to the nearest thousandth.

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

D

Determine all critical points for the function. - f(x)=3xx+2f ( x ) = \frac { 3 x } { x + 2 }

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

B

Use the following function and a graphing calculator to answer the questions. f(x)=2x+1.1sinx,[0,2π]f ( x ) = \sqrt { 2 x } + 1.1 \sin x , [ 0,2 \pi ]  a). Plot the function over the interval to see its general behavior there. Sketch the graph below. \text { a). Plot the function over the interval to see its general behavior there. Sketch the graph below. }  Use the following function and a graphing calculator to answer the questions.  f ( x ) = \sqrt { 2 x } + 1.1 \sin x , [ 0,2 \pi ]   \text { a). Plot the function over the interval to see its general behavior there. Sketch the graph below. }     b). Find the interior points where f' = 0 (you may need to use the numerical equation solver to approximate a solution). You may wish to plot f' as well. List the points as ordered pairs (x, y). c). Find the interior points where f' does not exist. List the points as ordered pairs (x, y). d). Evaluate the function at the endpoints and list these points as ordered pairs (x, y). e). Find the function's absolute extreme values on the interval and identify where they occur. b). Find the interior points where f' = 0 (you may need to use the numerical equation solver to approximate a solution). You may wish to plot f' as well. List the points as ordered pairs (x, y). c). Find the interior points where f' does not exist. List the points as ordered pairs (x, y). d). Evaluate the function at the endpoints and list these points as ordered pairs (x, y). e). Find the function's absolute extreme values on the interval and identify where they occur.

Free
(Essay)
4.8/5
(34)
Correct Answer:
Verified

a).
 a).     Solid line:  \mathrm { f } ( \mathrm { x } ) ; dashed line:  \mathrm { f } ^ { \prime } ( \mathrm { x } )  b). See figure above.  f ^ { \prime } ( x ) = 0  at  x = 4.4040  and  x = 2.0379 . Critical points of  f ( x )  are  ( 4.4040,1.9197 )  and  ( 2.0379,3.0010 ) . c).  f ^ { \prime } ( x )  is undefined at the endpoint  x = 0 . d). Endpoints are  ( 0,0 )  and  ( 2 \pi , 3.5449 ) . e). Absolute minimum:  ( 0,0 ) ; absolute maximum  ( 2 \pi , 3.5449 ) .
Solid line: f(x)\mathrm { f } ( \mathrm { x } ) ; dashed line: f(x)\mathrm { f } ^ { \prime } ( \mathrm { x } )
b). See figure above. f(x)=0f ^ { \prime } ( x ) = 0 at x=4.4040x = 4.4040 and x=2.0379x = 2.0379 .
Critical points of f(x)f ( x ) are (4.4040,1.9197)( 4.4040,1.9197 ) and (2.0379,3.0010)( 2.0379,3.0010 ) .
c). f(x)f ^ { \prime } ( x ) is undefined at the endpoint x=0x = 0 .
d). Endpoints are (0,0)( 0,0 ) and (2π,3.5449)( 2 \pi , 3.5449 ) .
e). Absolute minimum: (0,0)( 0,0 ) ; absolute maximum (2π,3.5449)( 2 \pi , 3.5449 ) .

Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -

(Multiple Choice)
4.8/5
(36)

Find the extreme values of the function and where they occur. - y=2xx2+1y = \frac { 2 x } { x ^ { 2 } + 1 }

(Multiple Choice)
5.0/5
(29)

Find the extreme values of the function and where they occur. - y=x33x2+6x8y = x ^ { 3 } - 3 x ^ { 2 } + 6 x - 8

(Multiple Choice)
4.8/5
(28)

Solve the problem. -Find the graph that matches the given table. x (x) -1.5 0 2 7

(Multiple Choice)
4.9/5
(27)

Find the absolute extreme values of the function on the interval. - f(x)=tanx,π4xπ6f ( x ) = \tan x , - \frac { \pi } { 4 } \leq x \leq \frac { \pi } { 6 }

(Multiple Choice)
4.8/5
(33)

Find the extreme values of the function and where they occur. - y=lnxx2y = \frac { \ln x } { x ^ { 2 } }

(Multiple Choice)
4.9/5
(33)

Sketch the graph of the function and determine whether it has any absolute extreme values on its domain. - y=x3,0<x10y = \mid x - 3 \mid , 0 < x \leq 10  Sketch the graph of the function and determine whether it has any absolute extreme values on its domain. - y = \mid  x - 3 \mid , 0 < x \leq 10

(Multiple Choice)
4.8/5
(44)

Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -

(Multiple Choice)
4.9/5
(28)

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x)=x3+4x2+4x3f ( x ) = x ^ { 3 } + 4 x ^ { 2 } + 4 x - 3

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Find the table that matches the graph below. Solve the problem. -Find the table that matches the graph below.

(Multiple Choice)
4.7/5
(33)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. -If the derivative of an even function f(x) is zero at x = c, can anything be said about the value of f' at x = -c? Givereasons for your answer.

(Essay)
4.9/5
(28)

Find the absolute extreme values of the function on the interval. - f(x)=6ex2,<x<f ( x ) = - 6 e ^ { - x ^ { 2 } } , - \infty < x < \infty

(Multiple Choice)
4.9/5
(27)

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x)=x31.5x2+18x2f ( x ) = - x ^ { 3 } - 1.5 x ^ { 2 } + 18 x - 2

(Multiple Choice)
4.9/5
(36)

Find the derivative at each critical point and determine the local extreme values. - y={x25x+10,x1x2+15x10,x>1y = \left\{ \begin{array} { l l } - x ^ { 2 } - 5 x + 10 , & x \leq 1 \\- x ^ { 2 } + 15 x - 10 , & x > 1\end{array} \right.

(Multiple Choice)
4.9/5
(29)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=x43x321x2+74x41f ( x ) = x ^ { 4 } - 3 x ^ { 3 } - 21 x ^ { 2 } + 74 x - 41

(Multiple Choice)
4.9/5
(32)

Find the absolute extreme values of the function on the interval. -f(x) = 3x - 4, -2 \leq x \leq 3

(Multiple Choice)
4.9/5
(35)

Find all possible functions with the given derivative. - y=7x2+1y ^ { \prime } = 7 x ^ { 2 } + 1

(Multiple Choice)
4.9/5
(31)
Showing 1 - 20 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)