Exam 4: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=x44x353x286x+5f ( x ) = x ^ { 4 } - 4 x ^ { 3 } - 53 x ^ { 2 } - 86 x + 5

(Multiple Choice)
4.8/5
(38)

Find the function with the given derivative whose graph passes through the point P. - f(x)=x9,P(2,10)f ^ { \prime } ( x ) = x - 9 , P ( 2 , - 10 )

(Multiple Choice)
4.7/5
(41)

Find all possible functions with the given derivative. - y=csc23θy ^ { \prime } = \csc ^ { 2 } 3 \theta

(Multiple Choice)
4.9/5
(33)

Find the absolute extreme values of the function on the interval. -g(x) = -x2 + 8x - 16, 4 \leq x \leq 4

(Multiple Choice)
4.9/5
(39)

Solve the problem. -A trucker handed in a ticket at a toll booth showing that in 3 hours he had covered 222 miles on a toll road with speed limit 65 mph. The trucker was cited for speeding. Why?

(Essay)
4.9/5
(37)

Find the largest open interval where the function is changing as requested. -Increasing f(x)=14x212x\mathrm { f } ( \mathrm { x } ) = \frac { 1 } { 4 } \mathrm { x } ^ { 2 } - \frac { 1 } { 2 } \mathrm { x }

(Multiple Choice)
5.0/5
(32)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. -Imagine there is a function for which f'(x) = 0 for all x. Does such a function exist? Is it reasonable to say that all values of x are critical points for such a function? Is it reasonable to say that all values of x are extreme values for such a function. Give reasons for your answer.

(Essay)
4.9/5
(34)

Find the absolute extreme values of the function on the interval. - f(x)=6x2/3,27x8f ( x ) = 6 x ^ { 2 / 3 } , - 27 \leq x \leq 8

(Multiple Choice)
5.0/5
(36)

Solve the problem. -Given the velocity and initial position of a body moving along a coordinate line at time t, find the body's positios t\mathrm { t } . v=8πsin4tπ,s(π2)=2v = \frac { 8 } { \pi } \sin \frac { 4 t } { \pi } , s \left( \pi ^ { 2 } \right) = 2

(Multiple Choice)
4.7/5
(26)

Find the extreme values of the function and where they occur. - y=x2ex+2xexy = x ^ { 2 } e ^ { - x } + 2 x e ^ { - x }

(Multiple Choice)
4.8/5
(34)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. -Let f(x)=x39xf ( x ) = \left| x ^ { 3 } - 9 x \right| (a) Does f(0)f ^ { \prime } ( 0 ) exist? (b) Does f(3)f ^ { \prime } ( 3 ) exist? (c) Does f(3)f ^ { \prime } ( - 3 ) exist? (d) Determine all extrema of ff .

(Essay)
4.9/5
(36)

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. - f(x)=x1/3f ( x ) = x ^ { 1 / 3 } , [5,2][-5,2]

(True/False)
4.9/5
(30)

Find the location of the indicated absolute extremum for the function. -Maximum Find the location of the indicated absolute extremum for the function. -Maximum

(Multiple Choice)
4.9/5
(30)

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x)=x2+12x+72f ( x ) = \sqrt { x ^ { 2 } + 12 x + 72 }

(Multiple Choice)
4.9/5
(48)

Solve the problem. -A rocket lifts off the surface of Earth with a constant acceleration of 30 m/sec2. How fast will the rocket be going 2.5 minutes later?

(Multiple Choice)
4.8/5
(36)

Determine all critical points for the function. - f(x)=x2+6x+9f ( x ) = x ^ { 2 } + 6 x + 9

(Multiple Choice)
4.9/5
(36)

Solve the problem. -At about what velocity do you enter the water if you jump from a 15 meter15 \mathrm {~meter} cliff? (Use g=9.8 m/sec2\mathrm { g } = 9.8 \mathrm {~m} / \mathrm { sec } ^ { 2 } .)

(Multiple Choice)
4.8/5
(34)

Find the function with the given derivative whose graph passes through the point P. - g(x)=4x2+6x,P(2,5)g ^ { \prime } ( x ) = \frac { 4 } { x ^ { 2 } } + 6 x , P ( - 2,5 )

(Multiple Choice)
4.9/5
(38)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. - f(x)=ln(x1),[2,6]f ( x ) = \ln ( x - 1 ) , [ 2,6 ] \quad Round to the nearest thousandth.

(Multiple Choice)
4.8/5
(28)

Solve the problem. -Given the acceleration, initial velocity, and initial position of a body moving along a coordinate line at time tt , fint body's position at time tt . a=3.2,v(0)=14,s(0)=5a = 3.2 , v ( 0 ) = - 14 , s ( 0 ) = - 5

(Multiple Choice)
4.7/5
(36)
Showing 41 - 60 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)