Exam 4: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. -  The function P(x)=2x+200x,0<x<\text { The function } \mathrm { P } ( \mathrm { x } ) = 2 \mathrm { x } + \frac { 200 } { \mathrm { x } } , 0 < \mathrm { x } < \infty models the perimeter of a rectangle of dimensions x by 100x\frac{100}{x} (a) Find the extreme values for P. (b) Give an interpretation in terms of perimeter of the rectangle for any values found in part (a).

(Essay)
4.7/5
(33)

Find the absolute extreme values of the function on the interval. - f(x)=cscx,π2x3π2f ( x ) = \csc x , - \frac { \pi } { 2 } \leq x \leq \frac { 3 \pi } { 2 }

(Multiple Choice)
5.0/5
(36)

Find the extreme values of the function and where they occur. - y=(x5)2/3y = ( x - 5 ) ^ { 2 / 3 }

(Multiple Choice)
4.8/5
(41)

Using the derivative of f(x) given below, determine the intervals on which f(x) is increasing or decreasing. - f(x)=(x+5)2exf ^ { \prime } ( x ) = ( x + 5 ) ^ { 2 } e ^ { - x }

(Multiple Choice)
4.9/5
(31)

Solve the problem. -On our moon, the acceleration of gravity is 1.6 m/sec21.6 \mathrm {~m} / \mathrm { sec } ^ { 2 } . If a rock is dropped into a crevasse, how fast will it be going just before it hits bottom 45 seconds later?

(Multiple Choice)
4.9/5
(36)

Find the function with the given derivative whose graph passes through the point P. - r(θ)=8csc2θ,P(π4,0)\mathrm { r } ^ { \prime } ( \theta ) = 8 - \csc ^ { 2 } \theta , \mathrm { P } \left( \frac { \pi } { 4 } , 0 \right)

(Multiple Choice)
4.8/5
(32)

Find the derivative at each critical point and determine the local extreme values. - y={4x,x<04+3xx2,x0y = \left\{ \begin{array} { l l } 4 - x , & x < 0 \\4 + 3 x - x ^ { 2 } , & x \geq 0\end{array} \right.

(Multiple Choice)
4.8/5
(37)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. - f(x)=x2+5x+2,[1,2]f ( x ) = x ^ { 2 } + 5 x + 2 , [ 1,2 ]

(Multiple Choice)
4.7/5
(36)

Find the function with the given derivative whose graph passes through the point P. - r(θ)=4+sec2θ,P(π,0)\mathrm { r } ^ { \prime } ( \theta ) = 4 + \sec ^ { 2 } \theta , \mathrm { P } ( \pi , 0 )

(Multiple Choice)
4.9/5
(36)

Find the absolute extreme values of the function on the interval. - f(x)=ln(x),7x1f ( x ) = \ln ( - x ) , - 7 \leq x \leq - 1

(Multiple Choice)
4.9/5
(32)

Provide an appropriate response. -Let f have a derivative on an interval I. f' has successive distinct zeros at x = 1 and x = 5. Prove that there can be at most one zero of f on the interval (1, 5).

(Essay)
4.7/5
(40)

Find the extreme values of the function and where they occur. - y=x2exy = x ^ { 2 } e ^ { x }

(Multiple Choice)
4.8/5
(38)

Find the extreme values of the function and where they occur. - y=x312x+2y = x ^ { 3 } - 12 x + 2

(Multiple Choice)
4.8/5
(33)

Find the absolute extreme values of the function on the interval. - F(x)=3x2,0.5x3F ( x ) = - \frac { 3 } { x ^ { 2 } } , 0.5 \leq x \leq 3

(Multiple Choice)
4.8/5
(41)

Find the largest open interval where the function is changing as requested. -Increasing y = 7x - 5

(Multiple Choice)
4.7/5
(38)

Using the derivative of f(x) given below, determine the intervals on which f(x) is increasing or decreasing. - f(x)=(8x)(9x)f ^ { \prime } ( x ) = ( 8 - x ) ( 9 - x )

(Multiple Choice)
4.8/5
(34)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=0.01x5x4+x3+8x27x+94f ( x ) = 0.01 x ^ { 5 } - x ^ { 4 } + x ^ { 3 } + 8 x ^ { 2 } - 7 x + 94

(Multiple Choice)
4.8/5
(29)

Find all possible functions with the given derivative. - y=32ty ^ { \prime } = \frac { 3 } { 2 \sqrt { t } }

(Multiple Choice)
4.8/5
(32)

Identify the function's local and absolute extreme values, if any, saying where they occur. - h(x)=x2x2+3x+6h ( x ) = \frac { x - 2 } { x ^ { 2 } + 3 x + 6 }

(Multiple Choice)
4.9/5
(40)

Find the function with the given derivative whose graph passes through the point P. - r(t)=sec2t4,P(0,0)r ^ { \prime } ( t ) = \sec ^ { 2 } t - 4 , P ( 0,0 )

(Multiple Choice)
4.7/5
(29)
Showing 121 - 140 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)