Exam 4: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Using the derivative of f(x) given below, determine the critical points of f(x). - f(x)=(x1)2(x+4)f ^ { \prime } ( x ) = ( x - 1 ) ^ { 2 } ( x + 4 )

(Multiple Choice)
4.9/5
(42)

Find all possible functions with the given derivative. - y=8x23xy ^ { \prime } = 8 x ^ { 2 } - 3 x

(Multiple Choice)
4.8/5
(43)

Find the derivative at each critical point and determine the local extreme values. - y=x2/3(x216);x0y = x ^ { 2 / 3 } \left( x ^ { 2 } - 16 \right) ; x \geq 0

(Multiple Choice)
4.7/5
(36)

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. - g(x)=x3/4g ( x ) = x ^ { 3 / 4 } , [0,5][0,5]

(True/False)
4.8/5
(37)

Find all possible functions with the given derivative. - r=3+1θ4r ^ { \prime } = 3 + \frac { 1 } { \theta ^ { 4 } }

(Multiple Choice)
4.9/5
(35)

Using the derivative of f(x) given below, determine the critical points of f(x). -f'(x) = (x + 2)(x + 9)

(Multiple Choice)
4.7/5
(44)

Find the extreme values of the function and where they occur. - y=719x2y = \frac { 7 } { \sqrt { 1 - 9 x ^ { 2 } } }

(Multiple Choice)
4.9/5
(45)

Find the derivative at each critical point and determine the local extreme values. - y={62x,x1x+3,x>1y = \left\{ \begin{array} { l } 6 - 2 x , x \leq 1 \\x + 3 , x > 1\end{array} \right.

(Multiple Choice)
4.9/5
(31)

Solve the problem. -A particle moves on a coordinate line with acceleration a=d2s/dt2=(5/t)+9ta = d ^ { 2 } s / d t ^ { 2 } = ( 5 / \sqrt { t } ) + 9 \sqrt { t } , subject to the conditions that ds/dt=3\mathrm { ds } / \mathrm { dt } = 3 and s=1\mathrm { s } = 1 when t=1\mathrm { t } = 1 . Find the velocity v=ds/dt\mathrm { v } = \mathrm { ds } / \mathrm { dt } in terms of t\mathrm { t } and the position ss in terms of tt .

(Multiple Choice)
4.9/5
(24)

Find the derivative at each critical point and determine the local extreme values. - y=x(4x2)y = x \left( 4 - x ^ { 2 } \right)

(Multiple Choice)
4.7/5
(42)

Graph the function, then find the extreme values of the function on the interval and indicate where they occur. -y = x1\mid{x - 1}\mid - x6\mid{ x - 6}\mid on the interval -2 < x < 7

(Multiple Choice)
4.7/5
(42)

Find the location of the indicated absolute extremum for the function. -Minimum Find the location of the indicated absolute extremum for the function. -Minimum

(Multiple Choice)
4.9/5
(35)

Determine all critical points for the function. - f(x)=(x9)3f ( x ) = ( x - 9 ) ^ { 3 }

(Multiple Choice)
4.8/5
(39)

Find the function with the given derivative whose graph passes through the point P. - g(x)=1x2+2x,P(4,4)g ^ { \prime } ( x ) = \frac { 1 } { x ^ { 2 } } + 2 x , P ( - 4,4 )

(Multiple Choice)
4.8/5
(31)

Solve the problem. -Find the table that matches the given graph. Solve the problem. -Find the table that matches the given graph.

(Multiple Choice)
4.8/5
(38)

Find the absolute extreme values of the function on the interval. - f(x)=x4/3,1x8f ( x ) = x ^ { 4 / 3 } , - 1 \leq x \leq 8

(Multiple Choice)
4.7/5
(37)

Identify the function's local and absolute extreme values, if any, saying where they occur. -f(r) = (r - 7) 3

(Multiple Choice)
4.7/5
(48)

Solve the problem. -Given the velocity and initial position of a body moving along a coordinate line at time t, find the body's positiol t\mathrm { t } . v=cosπ2t,s(0)=1v = \cos \frac { \pi } { 2 } t , s ( 0 ) = 1

(Multiple Choice)
4.7/5
(33)

Find the absolute extreme values of the function on the interval. - f(x)=ln(x+2)+1x,1x8f ( x ) = \ln ( x + 2 ) + \frac { 1 } { x } , 1 \leq x \leq 8

(Multiple Choice)
4.9/5
(40)
Showing 141 - 159 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)