Exam 4: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the absolute extreme values of the function on the interval. - h(x)=12x+4,2x4h ( x ) = \frac { 1 } { 2 } x + 4 , - 2 \leq x \leq 4

(Multiple Choice)
4.9/5
(39)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. -An approximation to the total profit (in thousands of dollars) from the sale of xx hundred thousand tires is given by p=x3+15x248x+450,x3p = - x ^ { 3 } + 15 x ^ { 2 } - 48 x + 450 , x \geq 3 . Find the number of hundred thousands of tires that must be sold to maximize profit.

(Multiple Choice)
4.7/5
(39)

Find the largest open interval where the function is changing as requested. -Decreasing y=1x2+7y = \frac { 1 } { x ^ { 2 } } + 7

(Multiple Choice)
4.8/5
(38)

Find the largest open interval where the function is changing as requested. -Increasing f(x)=1x2+1\quad f ( x ) = \frac { 1 } { x ^ { 2 } + 1 }

(Multiple Choice)
4.9/5
(35)

Find the extreme values of the function and where they occur. - y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }

(Multiple Choice)
4.8/5
(34)

Find all possible functions with the given derivative. - y=x5y ^ { \prime } = x ^ { 5 }

(Multiple Choice)
4.7/5
(42)

Find the derivative at each critical point and determine the local extreme values. - y=x21xy = x ^ { 2 } \sqrt { 1 - x }

(Multiple Choice)
4.9/5
(44)

Find the derivative at each critical point and determine the local extreme values. - y={14x212x+154,x1x36x2+8x,x>1y = \left\{ \begin{array} { l l } - \frac { 1 } { 4 } x ^ { 2 } - \frac { 1 } { 2 } x + \frac { 15 } { 4 } , & x \leq 1 \\x ^ { 3 } - 6 x ^ { 2 } + 8 x , & x > 1\end{array} \right.

(Multiple Choice)
4.7/5
(34)

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x)=x3+9x2+27x3f ( x ) = x ^ { 3 } + 9 x ^ { 2 } + 27 x - 3

(Multiple Choice)
4.9/5
(40)

Show that the function has exactly one zero in the given interval. - r(θ)=5cotθ+1θ2+6,(0,π)r ( \theta ) = 5 \cot \theta + \frac { 1 } { \theta ^ { 2 } } + 6 , ( 0 , \pi )

(Essay)
4.8/5
(45)

Using the derivative of f(x) given below, determine the critical points of f(x). -f'(x) = (x - 5) e-x

(Multiple Choice)
4.9/5
(43)

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. - f(θ)={cosθθ,πθ<00,θ=0f ( \theta ) = \left\{ \begin{array} { c c } \frac { \cos \theta } { \theta } , & - \pi \leq \theta < 0 \\0 , & \theta = 0\end{array} \right.

(True/False)
4.7/5
(36)

Find all possible functions with the given derivative. - y=3t2ty ^ { \prime } = 3 t - \frac { 2 } { \sqrt { t } }

(Multiple Choice)
4.7/5
(37)

Determine all critical points for the function. - f(x)=x312x+5f ( x ) = x ^ { 3 } - 12 x + 5

(Multiple Choice)
4.8/5
(33)

Find the absolute extreme values of the function on the interval. - g(x)=67x2,4x5g ( x ) = 6 - 7 x ^ { 2 } , - 4 \leq x \leq 5

(Multiple Choice)
4.8/5
(44)

Find the largest open interval where the function is changing as requested. -Increasing y=(x29)2\quad y = \left( x ^ { 2 } - 9 \right) ^ { 2 }

(Multiple Choice)
4.9/5
(39)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=0.1x4x315x2+59x+8f ( x ) = 0.1 x ^ { 4 } - x ^ { 3 } - 15 x ^ { 2 } + 59 x + 8

(Multiple Choice)
4.9/5
(44)

Provide an appropriate response. -The function f(x)={7x0x<10x=1f ( x ) = \left\{ \begin{array} { l l } 7 x & 0 \leq x < 1 \\ 0 & x = 1 \end{array} \right. is zero at x=0x = 0 and x=1x = 1 and differentiable on (0,1)( 0,1 ) , but its derivative on (0,1)( 0,1 ) is never zero. Does this example contradict Rolle's Theorem?

(Essay)
4.7/5
(32)

Find all possible functions with the given derivative. - y=x36xy ^ { \prime } = x ^ { 3 } - 6 x

(Multiple Choice)
4.7/5
(37)

Find the location of the indicated absolute extremum for the function. -Minimum Find the location of the indicated absolute extremum for the function. -Minimum

(Multiple Choice)
4.8/5
(34)
Showing 101 - 120 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)