Exam 3: Differentiation

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the slope of the curve at the indicated point. - y=x2+10x,x=4y = x ^ { 2 } + 10 x , x = - 4

(Multiple Choice)
4.7/5
(34)

Find the second derivative. - s=17t33+17\mathrm { s } = \frac { 17 \mathrm { t } ^ { 3 } } { 3 } + 17

(Multiple Choice)
4.7/5
(28)

Graph the equation and its tangent -  Graph y=5x2 and the tangent to the curve at the point whose x-coordinate is 1\text { Graph } y = 5 x ^ { 2 } \text { and the tangent to the curve at the point whose } x \text {-coordinate is } 1 \text {. }  Graph the equation and its tangent - \text { Graph } y = 5 x ^ { 2 } \text { and the tangent to the curve at the point whose } x \text {-coordinate is } 1 \text {. }

(Multiple Choice)
4.8/5
(34)

Find the slope of the curve at the indicated point. -Assume that a watermelon dropped from a tall building falls y=16t2fty = 16 \mathrm { t } ^ { 2 } \mathrm { ft } in t\mathrm { t } sec. Find the watermelon's average speed during the first 4sec4 \sec of fall and the speed at the instant t=4sect = 4 \mathrm { sec } .

(Multiple Choice)
4.7/5
(31)

Find the derivative of the function. - s=t7+3t+6t2s = \frac { t ^ { 7 } + 3 t + 6 } { t ^ { 2 } }

(Multiple Choice)
4.7/5
(37)

Find the derivatives of all orders of the function. - y=83x3+52x23x+13y = \frac { 8 } { 3 } x ^ { 3 } + \frac { 5 } { 2 } x ^ { 2 } - 3 x + 13

(Essay)
4.9/5
(44)

Find the indicated derivative. - dydx if y=3x3\frac { d y } { d x } \text { if } y = 3 x ^ { 3 }

(Multiple Choice)
4.9/5
(29)

Find the second derivative of the function. - p=(q+3q)(q+5q2)p = \left( \frac { q + 3 } { q } \right) \left( \frac { q + 5 } { q ^ { 2 } } \right)

(Multiple Choice)
4.8/5
(31)

Find the derivative. - y=x1/5y = x ^ { 1 / 5 }

(Multiple Choice)
4.7/5
(30)

Find the second derivative of the function. - y=x4+9x2y = \frac { x ^ { 4 } + 9 } { x ^ { 2 } }

(Multiple Choice)
4.9/5
(43)

 Use the formula f(x)=limzxf(z)f(x)zx to find the derivative of the function. \text { Use the formula } f ^ { \prime } ( x ) = \lim _ { z \rightarrow x } \frac { f ( z ) - f ( x ) } { z - x } \text { to find the derivative of the function. } - f(x)=5x+6f ( x ) = \frac { 5 } { x + 6 }

(Multiple Choice)
4.8/5
(35)

Provide an appropriate response. -Evaluate limx1x331x1=\lim _ { x \rightarrow 1 } \frac { x ^ { 33 } - 1 } { x - 1 } = by first converting it to a derivative at a particular xx -value.

(Multiple Choice)
4.7/5
(38)

Find the derivatives of all orders of the function. - y=(x+1)(x24x+8)y = ( x + 1 ) \left( x ^ { 2 } - 4 x + 8 \right)

(Essay)
4.8/5
(35)

Given the graph of f, find any values of x at which f ' is not defined. -Given the graph of f, find any values of x at which f ' is not defined. -

(Multiple Choice)
4.8/5
(35)

Provide an appropriate response. -Find an equation for the tangent to the curve y=8xx2+1y = \frac { 8 x } { x ^ { 2 } + 1 } at the point (1,4)( 1,4 ) .

(Multiple Choice)
4.9/5
(44)

Provide an appropriate response. -  What is the range of values of the slope of the curve y=x3+5x2 ? \text { What is the range of values of the slope of the curve } y = x ^ { 3 } + 5 x - 2 \text { ? }

(Essay)
4.9/5
(38)

Find the derivative of the function. - y=(x10)(x2+4x)x3y = \frac { ( x - 10 ) \left( x ^ { 2 } + 4 x \right) } { x ^ { 3 } }

(Multiple Choice)
4.9/5
(46)

Differentiate the function and find the slope of the tangent line at the given value of the independent variable. - g(x)=58+x,x=3g ( x ) = \frac { 5 } { 8 + x } , x = 3

(Multiple Choice)
4.7/5
(36)

The graph of a function is given. Choose the answer that represents the graph of its derivative -The graph of a function is given. Choose the answer that represents the graph of its derivative -

(Multiple Choice)
4.9/5
(36)

Find y'. - y=(1x2+5)(x21x2+5)y = \left( \frac { 1 } { x ^ { 2 } } + 5 \right) \left( x ^ { 2 } - \frac { 1 } { x ^ { 2 } } + 5 \right)

(Multiple Choice)
4.8/5
(42)
Showing 61 - 80 of 183
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)