Exam 3: Differentiation

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the second derivative of the function. - r=(1+8θ8θ)(8θ)r = \left( \frac { 1 + 8 \theta } { 8 \theta } \right) ( 8 - \theta )

(Multiple Choice)
4.9/5
(41)

Find y'. - y=(6x+x)(6xx)y = \left( \frac { 6 } { x } + x \right) \left( \frac { 6 } { x } - x \right)

(Multiple Choice)
4.8/5
(34)

Find the slope of the curve at the indicated point. -Find the points where the graph of the function have horizontal tangents. f(x)=x315xf ( x ) = x ^ { 3 } - 15 x

(Multiple Choice)
4.9/5
(42)

Provide an appropriate response. -A charged particle of mass mm and charge qq moving in an electric field EE has an acceleration a given by a=qEm\mathrm { a } = \frac { \mathrm { qE } } { \mathrm { m } } , where q\mathrm { q } and E\mathrm { E } are constants. Find d2adm2\frac { \mathrm { d } ^ { 2 } \mathrm { a } } { \mathrm { dm } ^ { 2 } } .

(Multiple Choice)
4.8/5
(30)

Find the slope of the curve at the indicated point. -Find an equation of the tangent to the curve f(x)=x+4f ( x ) = \sqrt { x + 4 } that has slope 14\frac { 1 } { 4 } .

(Multiple Choice)
4.8/5
(40)

Find the indicated derivative. - dpdq\frac { d p } { d q } if p=1q+1p = \frac { 1 } { \sqrt { q + 1 } }

(Multiple Choice)
4.8/5
(38)

Find the derivative. -w = z6.63\sqrt[3] {z^{6.6}} + 5e3.15e^{3.1}

(Multiple Choice)
4.9/5
(44)

Find the slope of the curve at the indicated point. -Find equations of all tangents to the curve f(x)=1xf ( x ) = \frac { 1 } { x } that have slope 1- 1 .

(Multiple Choice)
4.8/5
(35)

Find the second derivative. - y=2x37x2+3y = 2 x ^ { 3 } - 7 x ^ { 2 } + 3

(Multiple Choice)
4.9/5
(41)

Find the derivative. - w=z6ew = z ^ { 6 - e }

(Multiple Choice)
4.7/5
(39)

Given the graph of f, find any values of x at which f ' is not defined. -Given the graph of f, find any values of x at which f ' is not defined. -

(Multiple Choice)
4.9/5
(35)

The graph of a function is given. Choose the answer that represents the graph of its derivative -The graph of a function is given. Choose the answer that represents the graph of its derivative -

(Multiple Choice)
4.7/5
(41)

Find the derivative of the function. - r=θ8θ+8r = \frac { \sqrt { \theta } - 8 } { \sqrt { \theta } + 8 }

(Multiple Choice)
4.7/5
(41)

Provide an appropriate response. -Under standard conditions, molecules of a gas collide billions of times per second. If each molecule has diameteı average distance between collisions is given by L=12πt2n\mathrm { L } = \frac { 1 } { \sqrt { 2 } \pi \mathrm { t } ^ { 2 } \mathrm { n } } where nn , the volume density of the gas, is a constant. Find d2Ldt2\frac { d ^ { 2 } L } { d t ^ { 2 } } .

(Multiple Choice)
4.8/5
(34)

Suppose u and v are differentiable functions of x. Use the given values of the functions and their derivatives to find the value of the indicated derivative. - u(2)=6,(2)=2,v(2)=-2,(2)=-5. (2u-4v) at x=2

(Multiple Choice)
4.9/5
(44)

Find the second derivative. - y=9x2+3x7y = 9 x ^ { 2 } + 3 x - 7

(Multiple Choice)
4.8/5
(34)

Graph the equation and its tangent -  Graph y=4x2 and the tangent to the curve at the point whose x-coordinate is 2\text { Graph } y = 4 x ^ { 2 } \text { and the tangent to the curve at the point whose } x \text {-coordinate is } - 2 \text {. }  Graph the equation and its tangent - \text { Graph } y = 4 x ^ { 2 } \text { and the tangent to the curve at the point whose } x \text {-coordinate is } - 2 \text {. }

(Multiple Choice)
4.7/5
(29)

Find the derivative of the function. - z=6x2exz = 6 x ^ { 2 } e ^ { x }

(Multiple Choice)
4.9/5
(37)

Provide an appropriate response. -A heat engine is a device that converts thermal energy into other forms. The thermal efficiency, e, of a heat engin defined by e=QhQCQhe = \frac { Q _ { h } - Q _ { C } } { Q _ { h } } where Qh\mathrm { Q } _ { \mathrm { h } } is the heat absorbed in one cycle and QC\mathrm { Q } _ { \mathrm { C } } , the heat released into a reservoir in one cycle, is a constant. Find dedQh\frac { \mathrm { de } } { \mathrm { dQ } _ { \mathrm { h } } } .

(Multiple Choice)
5.0/5
(45)

Provide an appropriate response. -  Does the graph of f(x)={1,x<00,x=01,x>0 have a vertical tangent at the origin? Give reasons for your answer. \text { Does the graph of } \mathrm { f } ( \mathrm { x } ) = \left\{ \begin{array} { l l } 1 , & \mathrm { x } < 0 \\0 , & x = 0 \\- 1 , & x > 0\end{array} \right. \text { have a vertical tangent at the origin? Give reasons for your answer. }

(Essay)
4.7/5
(43)
Showing 21 - 40 of 183
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)