Exam 3: Differentiation

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Estimate the slope of the curve at the indicated point. -Estimate the slope of the curve at the indicated point. -

(Multiple Choice)
4.9/5
(29)

Find the derivative. - y=1412x2y = 14 - 12 x ^ { 2 }

(Multiple Choice)
4.8/5
(39)

Find the derivative of the function. - y=32x3+x6x9y = \frac { 3 - 2 x ^ { 3 } + x ^ { 6 } } { x ^ { 9 } }

(Multiple Choice)
4.8/5
(37)

Find the slope of the curve at the indicated point. -The power P\mathrm { P } (in W\mathrm { W } ) generated by a particular windmill is given by P=0.015 V3\mathrm { P } = 0.015 \mathrm {~V} ^ { 3 } where V\mathrm { V } is the velocity of the wind (in mph). Find the instantaneous rate of change of power with respect to velocity when the velocity is 9.0mph9.0 \mathrm { mph } .

(Multiple Choice)
4.9/5
(30)

Find the derivatives of all orders of the function. - y=x715,120y = \frac { x ^ { 7 } } { 15,120 }

(Essay)
4.8/5
(41)

Provide an appropriate response. -Find the slope of the tangent to the curve y=xy = \sqrt { x } at the point where x=16x = 16 .

(Multiple Choice)
4.9/5
(42)

Find the slope of the curve at the indicated point. - y=65+x,x=9y = \frac { 6 } { 5 + x } , x = 9

(Multiple Choice)
4.8/5
(30)

Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given. - Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given. -   y = x \quad y = 2 x   y=xy=2xy = x \quad y = 2 x

(Multiple Choice)
4.7/5
(35)

Suppose u and v are differentiable functions of x. Use the given values of the functions and their derivatives to find the value of the indicated derivative. - u(1)=5,(1)=-7,v(1)=6,(1)=-3 (2u-4v) at x=1

(Multiple Choice)
4.8/5
(39)

Provide an appropriate response. -  Does the graph of f(x)={0,x>05,x0 have a vertical tangent at the point (0,5)? Give reasons for your answer. \text { Does the graph of } f ( x ) = \left\{ \begin{array} { l l } 0 , & x > 0 \\5 , & x \leq 0\end{array} \text { have a vertical tangent at the point } ( 0,5 ) ? \right. \text { Give reasons for your answer. }

(Essay)
4.7/5
(26)

 Use the formula f(x)=limzxf(z)f(x)zx to find the derivative of the function. \text { Use the formula } f ^ { \prime } ( x ) = \lim _ { z \rightarrow x } \frac { f ( z ) - f ( x ) } { z - x } \text { to find the derivative of the function. } - f(x)=4x2+3x+5f ( x ) = 4 x ^ { 2 } + 3 x + 5

(Multiple Choice)
4.7/5
(32)

Differentiate the function and find the slope of the tangent line at the given value of the independent variable. - s=2t42t3,t=1\mathrm { s } = 2 \mathrm { t } ^ { 4 } - 2 \mathrm { t } ^ { 3 } , \mathrm { t } = - 1

(Multiple Choice)
4.9/5
(30)

Find y'. - y=(5x3+3)(2x75)y = \left( 5 x ^ { 3 } + 3 \right) \left( 2 x ^ { 7 } - 5 \right)

(Multiple Choice)
4.9/5
(38)

Find the second derivative. - y=8x34x2+5exy = 8 x ^ { 3 } - 4 x ^ { 2 } + 5 e ^ { x }

(Multiple Choice)
4.8/5
(42)

Provide an appropriate response. -Find all points (x,y)( x , y ) on the graph of y=x(x5)y = \frac { x } { ( x - 5 ) } with tangent lines perpendicular to the line y=5x4y = 5 x - 4 .

(Multiple Choice)
4.9/5
(33)

Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given. - Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given. -   y = \frac { 1 } { x } \quad y = - 1    y=1xy=1y = \frac { 1 } { x } \quad y = - 1

(Multiple Choice)
4.7/5
(38)

Find the derivative. - y=7x25x3+2xy = 7 x ^ { - 2 } - 5 x ^ { 3 } + 2 x

(Multiple Choice)
4.9/5
(42)

Calculate the derivative of the function. Then find the value of the derivative as specified. - f(x)=5x+9;f(2)f ( x ) = 5 x + 9 ; f ^ { \prime } ( 2 )

(Multiple Choice)
4.8/5
(42)

Find the second derivative of the function. - s=t6+2t+6t2s = \frac { t ^ { 6 } + 2 t + 6 } { t ^ { 2 } }

(Multiple Choice)
4.9/5
(37)

Find the derivative. - y=15x2+19xy = \frac { 1 } { 5 x ^ { 2 } } + \frac { 1 } { 9 x }

(Multiple Choice)
4.7/5
(32)
Showing 121 - 140 of 183
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)