Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine which of the following are trigonometric identities. 3  I. cos(4x)cos(2x)2tan(3x)=tan(x)\text { I. } \frac { \cos ( 4 x ) - \cos ( 2 x ) } { 2 \tan ( 3 x ) } = - \tan ( x ) II. cos(3x)cos(x)sin(3x)sin(x)=tan(2x)\frac { \cos ( 3 x ) - \cos ( x ) } { \sin ( 3 x ) - \sin ( x ) } = - \tan ( 2 x ) cos(6x)cos(2x)sin(4x)+sin(2x)=tan(3x\frac { \cos ( 6 x ) - \cos ( 2 x ) } { \sin ( 4 x ) + \sin ( 2 x ) } = - \tan ( 3 x

(Multiple Choice)
4.8/5
(43)

Verify the identity shown below. sec2μcot2(π2μ)=1\sec ^ { 2 } \mu - \cot ^ { 2 } \left( \frac { \pi } { 2 } - \mu \right) = 1

(Essay)
5.0/5
(39)

Simplify the given expression algebraically. cos(π+x)\cos ( \pi + x )

(Multiple Choice)
4.8/5
(40)

Verify the identity shown below. tanθ+1secθ+cscθ=sinθ\frac { \tan \theta + 1 } { \sec \theta + \csc \theta } = \sin \theta

(Essay)
4.7/5
(32)

Find all solutions of the following equation in the interval [0,2π)[ 0,2 \pi ) . csc2x=cotx+1\csc ^ { 2 } x = \cot x + 1

(Multiple Choice)
4.8/5
(25)

Solve the following equation. csc2(x)4=0\csc ^ { 2 } ( x ) - 4 = 0

(Multiple Choice)
4.8/5
(47)

Find the exact value of cos(uv)\cos ( u - v ) given that sinu=941\sin u = - \frac { 9 } { 41 } and cosv=1517\cos v = \frac { 15 } { 17 } . (Both uu and vv are in Quadrant IV.)

(Multiple Choice)
4.9/5
(30)

Verify the given identity. sinu+sinvcosu+cosv=tan12(u+v)\frac { \sin u + \sin v } { \cos u + \cos v } = \tan \frac { 1 } { 2 } ( u + v )

(Essay)
4.9/5
(43)

Rewrite the expression sin(y)1cos(y)\frac { \sin ( y ) } { 1 - \cos ( y ) } so that it is not in fractional form.

(Multiple Choice)
4.7/5
(25)

Use the cofunction identities to evaluate the expression below without the aid of a calculator. cos250+cos258+cos240+cos232\cos ^ { 2 } 50 ^ { \circ } + \cos ^ { 2 } 58 ^ { \circ } + \cos ^ { 2 } 40 ^ { \circ } + \cos ^ { 2 } 32 ^ { \circ }

(Multiple Choice)
4.8/5
(35)

Use the figure below to find the exact value of the given trigonometric expression cotx2\cot \frac { x } { 2 }  Use the figure below to find the exact value of the given trigonometric expression  \cot \frac { x } { 2 }

(Multiple Choice)
4.9/5
(30)

Which of the following is a solution to the given equation? secx2=0\sec x - 2 = 0

(Multiple Choice)
4.8/5
(38)

Approximate the solutions of the equation 2sin2(x)+5sin(x)2=02 \sin ^ { 2 } ( x ) + 5 \sin ( x ) - 2 = 0 by considering its graph below. Round your answer to one decimal.  Approximate the solutions of the equation  2 \sin ^ { 2 } ( x ) + 5 \sin ( x ) - 2 = 0  by considering its graph below. Round your answer to one decimal.

(Multiple Choice)
4.9/5
(40)

Solve the following equation. tan2x+tanx=0\tan ^ { 2 } x + \tan x = 0

(Multiple Choice)
4.8/5
(36)

Verify the given identity. sin5x+sin3xcos5x+cos3x=tan4x\frac { \sin 5 x + \sin 3 x } { \cos 5 x + \cos 3 x } = \tan 4 x

(Essay)
4.9/5
(39)

Use the half-angle formula to simplify the given expression. 1+cos16x2\sqrt { \frac { 1 + \cos 16 x } { 2 } }

(Multiple Choice)
4.7/5
(37)

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. tan3xtan2x+tanx1\tan ^ { 3 } x - \tan ^ { 2 } x + \tan x - 1

(Multiple Choice)
4.9/5
(37)

Determine which of the following are trigonometric identities. I. sin(x)sin(y)cos(x)+cos(y)+cos(x)cos(y)sin(x)+sin(y)=0\frac { \sin ( x ) - \sin ( y ) } { \cos ( x ) + \cos ( y ) } + \frac { \cos ( x ) - \cos ( y ) } { \sin ( x ) + \sin ( y ) } = 0 II. sin(x)+sin(y)cos(x)+cos(y)+cos(x)+cos(y)sin(x)+sin(y)=1\frac { \sin ( x ) + \sin ( y ) } { \cos ( x ) + \cos ( y ) } + \frac { \cos ( x ) + \cos ( y ) } { \sin ( x ) + \sin ( y ) } = 1 III. sin(x)+cos(y)sin(x)cos(y)=sin(y)+cos(x)\frac { \sin ( x ) + \cos ( y ) } { \sin ( x ) \cos ( y ) } = \sin ( y ) + \cos ( x )

(Multiple Choice)
4.7/5
(34)

Solve the multi-angle equation below. cos(x2)=22\cos \left( \frac { x } { 2 } \right) = \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
4.9/5
(37)

Verify the identity shown below. 1+tanθ1+cotθ=tanθ\frac { 1 + \tan \theta } { 1 + \cot \theta } = \tan \theta

(Essay)
5.0/5
(32)
Showing 81 - 100 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)