Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write the given expression as the sine of an angle. sin75cos35sin35cos75\sin 75 ^ { \circ } \cos 35 ^ { \circ } - \sin 35 ^ { \circ } \cos 75 ^ { \circ }

(Multiple Choice)
4.7/5
(36)

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.

(Multiple Choice)
4.9/5
(46)

Which of the following is a solution to the given equation? cotx+1=0\cot x + 1 = 0

(Multiple Choice)
4.8/5
(32)

Use the product-to-sum formulas to write the expression below as a sum or difference sin(8θ)cos(6θ)\sin ( 8 \theta ) \cos ( 6 \theta )

(Multiple Choice)
4.7/5
(37)

Use the graph below of the function to approximate the solutions to 3cos(2x)cos(x)=03 \cos ( 2 x ) - \cos ( x ) = 0 in the interval [0,2π)[ 0,2 \pi ) . Round your answers to one decimal.  Use the graph below of the function to approximate the solutions to  3 \cos ( 2 x ) - \cos ( x ) = 0  in the interval  [ 0,2 \pi ) . Round your answers to one decimal.

(Multiple Choice)
4.9/5
(42)

Find all solutions of the following equation on the interval [0,2π)[ 0,2 \pi ) . cot(x)+3=0\cot ( x ) + \sqrt { 3 } = 0

(Multiple Choice)
4.8/5
(33)

Use the graph below of the function to approximate the solutions to 4cos(2x)cos(x)=04 \cos ( 2 x ) - \cos ( x ) = 0 in the interval [0,2π)[ 0,2 \pi ) . Round your answers to one decimal.  Use the graph below of the function to approximate the solutions to  4 \cos ( 2 x ) - \cos ( x ) = 0  in the interval  [ 0,2 \pi ) . Round your answers to one decimal.

(Multiple Choice)
4.9/5
(33)

If x=6sinθx = 6 \sin \theta , use trigonometric substitution to write 36x2\sqrt { 36 - x ^ { 2 } } as a trigonometric function of θ\theta , where 0<θ<π20 < \theta < \frac { \pi } { 2 } .

(Multiple Choice)
4.8/5
(38)

Use the figure below to determine the exact value of the given function. sin2θ\sin 2 \theta  Use the figure below to determine the exact value of the given function.  \sin 2 \theta

(Multiple Choice)
4.7/5
(34)

Use a double-angle formula to find the exact value of cos2u\cos 2 u when sinu=513\sin u = \frac { 5 } { 13 } , where π2<u<π\frac { \pi } { 2 } < u < \pi .

(Multiple Choice)
4.8/5
(40)

Determine which of the following are trigonometric identities. 6 I. cos(4x)+cos(2x)2cot(3x)=cot(x)\frac { \cos ( 4 x ) + \cos ( 2 x ) } { 2 \cot ( 3 x ) } = \cot ( x ) II. cos(4x)+cos(x)sin(3x)sin(x)=cot(2x)\frac { \cos ( 4 x ) + \cos ( x ) } { \sin ( 3 x ) - \sin ( x ) } = \cot ( 2 x ) III. cos(6x)+cos(2x)sin(4x)+sin(2x)=cot(3x)\frac { \cos ( 6 x ) + \cos ( 2 x ) } { \sin ( 4 x ) + \sin ( 2 x ) } = \cot ( 3 x )

(Multiple Choice)
4.7/5
(36)

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sin2x=sinx\sin 2 x = \sin x

(Multiple Choice)
4.7/5
(30)

Use the figure below to determine the exact value of the given function. sin2θ\sin 2 \theta  Use the figure below to determine the exact value of the given function.  \sin 2 \theta

(Multiple Choice)
4.9/5
(39)

Verify the identity shown below. 1+sinθ1sinθ=1+sinθcosθ\sqrt { \frac { 1 + \sin \theta } { 1 - \sin \theta } } = \frac { 1 + \sin \theta } { | \cos \theta | }

(Essay)
4.9/5
(42)

Use a graphing utility to approximate the solutions (to three decimal places) of the given equation in the interval [0,2π)[ 0,2 \pi ) . (cosx)(15cosx+4)3=0( \cos x ) ( 15 \cos x + 4 ) - 3 = 0

(Multiple Choice)
4.9/5
(33)

Which of the following is a solution to the given equation? 2cosx+3=02 \cos x + \sqrt { 3 } = 0

(Multiple Choice)
4.9/5
(38)

Solve the following equation. 3csc2(x)4=03 \csc ^ { 2 } ( x ) - 4 = 0

(Multiple Choice)
4.8/5
(43)

Solve the following trigonometric equation on the interval [0,2π)[ 0,2 \pi ) . sin(x)+cos(x)=0\sin ( x ) + \cos ( x ) = 0

(Multiple Choice)
4.9/5
(31)

Verify the identity shown below. tan2θsec2θ+sec2θ=sec4θ\tan ^ { 2 } \theta \sec ^ { 2 } \theta + \sec ^ { 2 } \theta = \sec ^ { 4 } \theta

(Essay)
4.8/5
(33)

Which of the following is equivalent to the given expression? cot2xcscx+1\frac { \cot ^ { 2 } x } { \csc x + 1 }

(Multiple Choice)
4.7/5
(45)
Showing 21 - 40 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)