Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine which of the following are trigonometric identities. I. sin(y)sin(x)cos(y)+cos(x)+cos(y)cos(x)sin(y)+sin(x)=0\frac { \sin ( y ) - \sin ( x ) } { \cos ( y ) + \cos ( x ) } + \frac { \cos ( y ) - \cos ( x ) } { \sin ( y ) + \sin ( x ) } = 0 II. sin(y)+sin(x)cos(y)+cos(x)+cos(y)+cos(x)sin(y)+sin(x)=1\frac { \sin ( y ) + \sin ( x ) } { \cos ( y ) + \cos ( x ) } + \frac { \cos ( y ) + \cos ( x ) } { \sin ( y ) + \sin ( x ) } = 1 III. sin(y)+cos(x)sin(y)cos(x)=sin(x)+cos(y)\frac { \sin ( y ) + \cos ( x ) } { \sin ( y ) \cos ( x ) } = \sin ( x ) + \cos ( y )

(Multiple Choice)
4.7/5
(30)

Determine which of the following are trigonometric identities. I. sin(t)+sin(s)cos(t)cos(s)+cos(t)+cos(s)sin(t)sin(s)=0\frac { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) - \cos ( \mathrm { s } ) } + \frac { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) - \sin ( \mathrm { s } ) } = 0 II. sin(t)+sin(s)cos(t)+cos(s)+cos(t)+cos(s)sin(t)+sin(s)=1\frac { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } + \frac { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } = 1 III. sin(t)+cos(s)sin(t)cos(s)=sin(s)+cos(t)\frac { \sin ( \mathrm { t } ) + \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) \cos ( \mathrm { s } ) } = \sin ( \mathrm { s } ) + \cos ( \mathrm { t } )

(Multiple Choice)
4.9/5
(40)

Solve the multiple-angle equation in the interval [0,2π)[ 0,2 \pi ) tan2x=1\tan 2 x = - 1

(Multiple Choice)
4.7/5
(50)

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. sin3xsin2xsinx+1\sin ^ { 3 } x - \sin ^ { 2 } x - \sin x + 1

(Multiple Choice)
4.8/5
(46)

Approximate the solutions of the equation 2sin2(x)=2cos(x)+12 \sin ^ { 2 } ( x ) = 2 \cos ( x ) + 1 by considering its graph below. Round your answer to one decimal.  Approximate the solutions of the equation  2 \sin ^ { 2 } ( x ) = 2 \cos ( x ) + 1  by considering its graph below. Round your answer to one decimal.

(Multiple Choice)
4.9/5
(37)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=1161\sin u = \frac { 11 } { 61 } and cosv=4041\cos v = - \frac { 40 } { 41 } . (Both uu and vv are in Quadrant II.)

(Multiple Choice)
4.9/5
(39)

Verify the identity shown below. cscθcosθcotθ=sinθ\csc \theta - \cos \theta \cot \theta = \sin \theta

(Essay)
4.8/5
(38)

Verify the given identity. cos(x+y)cos(xy)=cos2xsin2y\cos ( x + y ) \cos ( x - y ) = \cos ^ { 2 } x - \sin ^ { 2 } y

(Essay)
4.8/5
(39)

Use the graph below to approximate the solutions of the equation 2cos(x)sin(x)=0- 2 \cos ( x ) - \sin ( x ) = 0 on the interval [0,2π)[ 0,2 \pi ) . Round your answer to one decimal.  Use the graph below to approximate the solutions of the equation  - 2 \cos ( x ) - \sin ( x ) = 0  on the interval  [ 0,2 \pi ) . Round your answer to one decimal.

(Multiple Choice)
4.8/5
(34)

Solve the multi-angle equation below. sin(2x)=32\sin ( 2 x ) = \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.9/5
(34)

Solve the multiple-angle equation in the interval [0,2π)[ 0,2 \pi ) . sec2x=2\sec 2 x = 2

(Multiple Choice)
4.8/5
(43)

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sinxcos2x+cosxsin2x=0\sin x \cos 2 x + \cos x \sin 2 x = 0

(Multiple Choice)
4.7/5
(41)

Solve the multi-angle equation below. sin(2x)=32\sin ( 2 x ) = \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.8/5
(33)

Determine which of the following are trigonometric identities. I. cot(θ)csc(θ)=sec(θ)\cot ( \theta ) \csc ( \theta ) = \sec ( \theta ) II. cot(θ)sec(θ)=csc(θ)\cot ( \theta ) \sec ( \theta ) = \csc ( \theta ) III. sec(θ)csc(θ)=cot(θ)\sec ( \theta ) \csc ( \theta ) = \cot ( \theta ) IV. cot(θ)sin(θ)=1\cot ( \theta ) \sin ( \theta ) = 1

(Multiple Choice)
4.8/5
(33)

Verify the identity shown below. sec2(π2y)1=cot2y\sec ^ { 2 } \left( \frac { \pi } { 2 } - y \right) - 1 = \cot ^ { 2 } y

(Essay)
4.8/5
(35)

Use the cofunction identities to evaluate the expression below without the aid of a calculator. sin262+sin230+sin228+sin260\sin ^ { 2 } 62 ^ { \circ } + \sin ^ { 2 } 30 ^ { \circ } + \sin ^ { 2 } 28 ^ { \circ } + \sin ^ { 2 } 60 ^ { \circ }

(Multiple Choice)
4.9/5
(39)

Find the exact value of tan(u+v)\tan ( u + v ) given that sinu=725\sin u = - \frac { 7 } { 25 } and cosv=1213\cos v = \frac { 12 } { 13 } . (Both uu and vv are in Quadrant IV.)

(Multiple Choice)
4.8/5
(34)

Find all solutions of the following equation in the interval [0,2π)[ 0,2 \pi ) . 2cosxsecx=02 \cos x - \sec x = 0

(Multiple Choice)
4.9/5
(35)

Use the trigonometric substitution x=8sec(θ)x = 8 \sec ( \theta ) to write the expression x264\sqrt { x ^ { 2 } - 64 } as a trigonometric function of θ\theta , where 0<θ<π20 < \theta < \frac { \pi } { 2 } .

(Multiple Choice)
5.0/5
(32)

Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. (sinx+cosx)(sinxcosx)( \sin x + \cos x ) ( \sin x - \cos x )

(Multiple Choice)
4.9/5
(39)
Showing 61 - 80 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)