Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the graph of the function f(x)=2cos(x)+sin(x)f ( x ) = - 2 \cos ( x ) + \sin ( x ) to approximate the maximum points of the graph in the interval [0,2π][ 0,2 \pi ] . Round your answer to one decimal.  Use the graph of the function  f ( x ) = - 2 \cos ( x ) + \sin ( x )  to approximate the maximum points of the graph in the interval  [ 0,2 \pi ] . Round your answer to one decimal.

(Multiple Choice)
4.9/5
(38)

Solve the following equation. tanx3=0\tan x - \sqrt { 3 } = 0

(Multiple Choice)
4.8/5
(38)

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. cot2αcot2αcos2α\cot ^ { 2 } \alpha - \cot ^ { 2 } \alpha \cos ^ { 2 } \alpha

(Multiple Choice)
4.7/5
(43)

Verify the identity shown below. sin2θ1cos2θ1=csc2θ1\frac { \sin ^ { 2 } \theta - 1 } { \cos ^ { 2 } \theta - 1 } = \csc ^ { 2 } \theta - 1

(Essay)
4.9/5
(43)

Find the exact value of the given expression using a sum or difference formula. cos7π12\cos \frac { 7 \pi } { 12 }

(Multiple Choice)
4.9/5
(39)

Verify the identity shown below. (1+cot2θ)tan2θ=sec2θ\left( 1 + \cot ^ { 2 } \theta \right) \tan ^ { 2 } \theta = \sec ^ { 2 } \theta

(Essay)
4.9/5
(37)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. cotβsecβ\cot \beta \sec \beta

(Multiple Choice)
4.9/5
(34)

The rate of change of the function f(x)=cscxsinxf ( x ) = - \csc x - \sin x is given by the expression cscxcotxcosx\csc x \cot x - \cos x \text {. } Which of the following is its simplification?

(Multiple Choice)
4.9/5
(44)

Use the sum-to-product formulas to write the given expression as a product. sin9θsin7θ\sin 9 \theta - \sin 7 \theta

(Multiple Choice)
4.9/5
(38)

Solve the multi-angle equation below. cos(x2)=32\cos \left( \frac { x } { 2 } \right) = - \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.8/5
(32)

Write the given expression as the cosine of an angle. cos30cos50+sin30sin50\cos 30 ^ { \circ } \cos 50 ^ { \circ } + \sin 30 ^ { \circ } \sin 50 ^ { \circ }

(Multiple Choice)
4.9/5
(37)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=1161\sin u = \frac { 11 } { 61 } and cosv=4041\cos v = - \frac { 40 } { 41 } . (Both uu and vv are in Quadrant II.)

(Multiple Choice)
4.9/5
(42)

If sinx=12\sin x = \frac { 1 } { 2 } and cosx=32\cos x = \frac { \sqrt { 3 } } { 2 } , evaluate the following function. cscx\csc x

(Multiple Choice)
4.9/5
(34)

Use the graph below of the function to approximate the solutions to 4cos(2x)cos(x)=04 \cos ( 2 x ) - \cos ( x ) = 0 in the interval [0,2π)[ 0,2 \pi ) . Round your answers to one decimal.  Use the graph below of the function to approximate the solutions to  4 \cos ( 2 x ) - \cos ( x ) = 0  in the interval  [ 0,2 \pi ) . Round your answers to one decimal.

(Multiple Choice)
4.9/5
(38)

Find all solutions of the following equation on the interval [0,2π)[ 0,2 \pi ) . csc2(x)2=0\csc ^ { 2 } ( x ) - 2 = 0

(Multiple Choice)
4.7/5
(36)

Find the exact value of the given expression using a sum or difference formula. sin165\sin 165 ^ { \circ }

(Multiple Choice)
4.8/5
(40)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=941\sin u = \frac { 9 } { 41 } and cosv=1517\cos v = - \frac { 15 } { 17 } . (Both uu and vv are in Quadrant II.)

(Multiple Choice)
5.0/5
(39)

Use the product-to-sum formula to write the given product as a sum or difference. 6sinπ8cosπ86 \sin \frac { \pi } { 8 } \cos \frac { \pi } { 8 }

(Multiple Choice)
4.7/5
(37)

Simplify the given expression algebraically. cos(π2+x)\cos \left( \frac { \pi } { 2 } + x \right)

(Multiple Choice)
4.9/5
(29)

Solve the multi-angle equation below. sin(2x)=22\sin ( 2 x ) = - \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
4.8/5
(35)
Showing 41 - 60 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)