Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use a double angle formula to rewrite the following expression. 16sin(x)cos(x)- 16 \sin ( x ) \cos ( x )

(Multiple Choice)
4.9/5
(44)

Find the exact value of the given expression using a sum or difference formula. sin345\sin 345 ^ { \circ }

(Multiple Choice)
4.7/5
(36)

Find all solutions of the following equation in the interval [0,2π)[ 0,2 \pi ) 2cos2x=2+sinx2 \cos ^ { 2 } x = 2 + \sin x

(Multiple Choice)
4.9/5
(38)

Verify the identity shown below. 1secθtanθ=secθ+tanθ\frac { 1 } { \sec \theta - \tan \theta } = \sec \theta + \tan \theta

(Essay)
4.7/5
(42)

Determine the exact value of the following expression. cos(1200)\cos \left( 120 ^ { \circ } - 0 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(33)

If x=8cosθx = 8 \cos \theta , use trigonometric substitution to write 64x2\sqrt { 64 - x ^ { 2 } } as a trigonometric function of θ\theta , where 0<θ<π0 < \theta < \pi .

(Multiple Choice)
4.8/5
(31)

Solve the multi-angle equation below. sin(2x)=22\sin ( 2 x ) = - \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
5.0/5
(42)

If cscx=433\csc x = \frac { 4 \sqrt { 3 } } { 3 } and cosx<0\cos x < 0 , evaluate the function below. secx\sec x

(Multiple Choice)
4.9/5
(41)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=513\sin u = \frac { 5 } { 13 } and cosv=45\cos v = - \frac { 4 } { 5 } . (Both uu and vv are in Quadrant II.)

(Multiple Choice)
4.8/5
(35)

Determine which of the following are trigonometric identities. I. cos4(t)+sin4(t)=12sin2(t)+2sin4(t)\cos ^ { 4 } ( \mathrm { t } ) + \sin ^ { 4 } ( \mathrm { t } ) = 1 - 2 \sin ^ { 2 } ( \mathrm { t } ) + 2 \sin ^ { 4 } ( \mathrm { t } ) II. sin5(t)=sin3(t)cos2(t)sin3(t)\sin ^ { 5 } ( \mathrm { t } ) = \sin ^ { 3 } ( \mathrm { t } ) \cos ^ { 2 } ( \mathrm { t } ) - \sin ^ { 3 } ( \mathrm { t } ) III. sin3(t)cos2(t)=(cos2(t)cos4(t))sin(t)\sin ^ { 3 } ( \mathrm { t } ) \cos ^ { 2 } ( \mathrm { t } ) = \left( \cos ^ { 2 } ( \mathrm { t } ) - \cos ^ { 4 } ( \mathrm { t } ) \right) \sin ( \mathrm { t } )

(Multiple Choice)
4.9/5
(32)

Approximate the solutions of the equation 2sin2(x)4sin(x)+1=02 \sin ^ { 2 } ( x ) - 4 \sin ( x ) + 1 = 0 by considering its graph below. Round your answer to one decimal.  Approximate the solutions of the equation  2 \sin ^ { 2 } ( x ) - 4 \sin ( x ) + 1 = 0  by considering its graph below. Round your answer to one decimal.

(Multiple Choice)
4.9/5
(36)

Use the product-to-sum formula to write the given product as a sum or difference. 10sinπ8cosπ810 \sin \frac { \pi } { 8 } \cos \frac { \pi } { 8 }

(Multiple Choice)
4.8/5
(38)

Use the sum-to-product formulas to find the exact value of the given expression. cos150cos30\cos 150 ^ { \circ } - \cos 30 ^ { \circ }

(Multiple Choice)
4.7/5
(44)

Use a double-angle formula to find the exact value of cos2u\cos 2 u when sinu=817\sin u = \frac { 8 } { 17 } , where π2<u<π\frac { \pi } { 2 } < u < \pi .

(Multiple Choice)
4.8/5
(37)

If x=2cotθx = 2 \cot \theta , use trigonometric substitution to write 4+x2\sqrt { 4 + x ^ { 2 } } as a trigonometric function of θ\theta , where 0<θ<π0 < \theta < \pi .

(Multiple Choice)
4.9/5
(41)

Verify the identity shown below. 1sinθ1+sinθ=2sec2θ2secθtanθ1\frac { 1 - \sin \theta } { 1 + \sin \theta } = 2 \sec ^ { 2 } \theta - 2 \sec \theta \tan \theta - 1

(Essay)
4.8/5
(29)

Use the figure below to find the exact value of the given trigonometric expression. cotx2\cot \frac { x } { 2 }  Use the figure below to find the exact value of the given trigonometric expression.  \cot \frac { x } { 2 }

(Multiple Choice)
4.8/5
(38)

Determine which of the following are trigonometric identities. I. sin(θ)+cot(θ)cos(θ)=csc(θ)\sin ( \theta ) + \cot ( \theta ) \cos ( \theta ) = \csc ( \theta ) II. cot(θ)sin(θ)cos(θ)=0\cot ( \theta ) - \sin ( \theta ) \cos ( \theta ) = 0 III. sin(θ)+sin(θ)cos(θ)=csc(θ)\sin ( \theta ) + \sin ( \theta ) \cos ( \theta ) = \csc ( \theta )

(Multiple Choice)
4.8/5
(33)

Determine which of the following are trigonometric identities. I. csc(θ)sec(θ)=tan(θ)\csc ( \theta ) \sec ( \theta ) = \tan ( \theta ) II. csc(θ)tan(θ)=sec(θ)\csc ( \theta ) \tan ( \theta ) = \sec ( \theta ) III. tan(θ)sec(θ)=csc(θ)\tan ( \theta ) \sec ( \theta ) = \csc ( \theta ) IV. csc(θ)sin(θ)=1\csc ( \theta ) \sin ( \theta ) = 1

(Multiple Choice)
4.9/5
(46)

Which of the following is a solution to the given equation? 2sinx1=02 \sin x - 1 = 0

(Multiple Choice)
4.7/5
(41)
Showing 101 - 120 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)