Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the area of the surface. The part of the paraboloid r(u,v)=ucosvi+usinvj+u2k;0u3,0v2π\mathbf { r } ( u , v ) = u \cos v \mathbf { i } + u \sin v \mathbf { j } + u ^ { 2 } \mathbf { k } ; 0 \leq u \leq 3,0 \leq v \leq 2 \pi

(Multiple Choice)
4.8/5
(46)

Find the work done by the force field F\mathbf { F } on a particle that moves along the curve CC . F(x,y)=(5x+5y)i+4xyj;C:r(t)=3t2i+t2j,0t1\mathbf { F } ( x , y ) = ( 5 x + 5 y ) \mathbf { i } + 4 x y \mathbf { j } ; C : \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } + t ^ { 2 } \mathbf { j } , 0 \leq t \leq 1

(Multiple Choice)
4.8/5
(39)

Use Stoke's theorem to evaluate CFdr,F(x,y,z)=6yx2i+2x3j+6xyk\int _ { C } \mathbf { F } \cdot d \mathbf { r } , \mathbf { F } ( x , y , z ) = 6 y x ^ { 2 } \mathbf { i } + 2 x ^ { 3 } \mathbf { j } + 6 x y \mathbf { k } , CC is the curve of intersection of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } and the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 oriented counterclockwise as viewed from above.

(Short Answer)
4.8/5
(34)

Evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } for the vector field F\mathbf { F } and the path CC . (Hint: Show that F\mathbf { F } is conservative, and pick a simpler path.) F(x,y)=(18x2y25ysinx)i+(12x3y+5cosx)j\mathbf { F } ( x , y ) = \left( 18 x ^ { 2 } y ^ { 2 } - 5 y \sin x \right) \mathbf { i } + \left( 12 x ^ { 3 } y + 5 \cos x \right) \mathbf { j } C:r(t)=(2sint)i+2costj;0tπC : \mathbf { r } ( t ) = ( - 2 - \sin t ) \mathbf { i } + 2 \cos t \mathbf { j } ; \quad 0 \leq t \leq \pi

(Multiple Choice)
4.9/5
(28)

Let SS be the cube with vertices (±1,±1,±1)( \pm 1 , \pm 1 , \pm 1 ) . Approximate Sx2+2y2+7z2\iint _ { S } \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 7 z ^ { 2 } } by using a Riemann sum as in Definition 1, taking the patches SijS _ { i j } to be the squares that are the faces of the cube and the points PijP _ { i j } to be the centers of the squares.

(Multiple Choice)
4.8/5
(33)

Use Stoke's theorem to evaluate SFdr\iint _ { S } \mathbf { F } \cdot d r . F(x,y,z)=4zi+2j+6yk\mathbf { F } ( x , y , z ) = 4 z \mathbf { i } + 2 \mathbf { j } + 6 y \mathbf { k } CC is the curve of intersection of the plane z=x+9z = x + 9 and the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9

(Short Answer)
4.8/5
(39)

Use Green's Theorem to evaluate the line integral along the positively oriented closed curve CC . C(6xy+5ln(1+x))dx+2x2dy\oint _ { C } ( 6 x y + 5 \ln ( 1 + x ) ) d x + 2 x ^ { 2 } d y , where CC is the cardioid r=2+2cosθr = 2 + 2 \cos \theta .

(Multiple Choice)
4.9/5
(40)

Use a computer algebra system to compute the flux of F\mathbf { F } across S.SS . S is the surface of the cube cut from the first octant by the planes x=π2,y=π2,z=π2x = \frac { \pi } { 2 } , y = \frac { \pi } { 2 } , z = \frac { \pi } { 2 } F(x,y,z)=5sinxcos2yi+5sin3ycos4zj+5sin5zcos6xk\mathbf { F } ( x , y , z ) = 5 \sin x \cos ^ { 2 } y \mathbf { i } + 5 \sin ^ { 3 } y \cos ^ { 4 } z \mathbf { j } + 5 \sin ^ { 5 } z \cos ^ { 6 } x \mathbf { k }

(Multiple Choice)
4.8/5
(36)

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S . f(x,y,z)=z;Sf ( x , y , z ) = z ; S is the part of the torus with vector representation r(u,v)=(5+3cosv)cosui+(5+3cosv)sinuj+3sinvk,0u2π,0vπ2\mathbf { r } ( u , v ) = ( 5 + 3 \cos v ) \cos u \mathbf { i } + ( 5 + 3 \cos v ) \sin u \mathbf { j } + 3 \sin v \mathbf { k } , 0 \leq u \leq 2 \pi , 0 \leq v \leq \frac { \pi } { 2 }

(Multiple Choice)
4.7/5
(42)

Evaluate the line integral over the given curve C. C4xyds, where C is the line segment joining (2,1) to (4,5)\int _ { C } 4 x y d s , \text { where } C \text { is the line segment joining } ( - 2 , - 1 ) \text { to } ( 4,5 )

(Short Answer)
4.9/5
(30)

Determine whether F\mathbf { F } is conservative. If so, find a function ff such that F=f\mathbf { F } = \nabla f .. F(x,y,z)=4x3y2z3i+2x4yz3j+3x4y2z2k\mathbf { F } ( x , y , z ) = 4 x ^ { 3 } y ^ { 2 } z ^ { 3 } \mathbf { i } + 2 x ^ { 4 } y z ^ { 3 } \mathbf { j } + 3 x ^ { 4 } y ^ { 2 } z ^ { 2 } \mathbf { k }

(Short Answer)
4.8/5
(38)

Evaluate Cyzdy+xydz\int _ { C } y z d y + x y d z , where CC is given by x=10t,y=3t,z=10t2,0t1x = 10 \sqrt { t } , y = 3 t , z = 10 t ^ { 2 } , 0 \leq t \leq 1 . Round your answer to two decimal place.

(Multiple Choice)
4.7/5
(31)

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S . f(x,y,z)=x+y;Sf ( x , y , z ) = x + y ; S is the part of the plane 2x+4y+3z=242 x + 4 y + 3 z = 24 in the first octant.

(Multiple Choice)
4.8/5
(30)

Find the work done by the force field F(x,y)=xsin(y)i+yj\mathbf { F } ( x , y ) = x \sin ( y ) \mathbf { i } + y \mathbf { j } on a particle that moves along the parabola y=x2y = x ^ { 2 } from (1,1)( 1,1 ) to (2,4)( 2,4 ) .

(Multiple Choice)
4.9/5
(36)

Find the mass of the surface SS having the given mass density. SS is part of the plane x+5y+9z=45x + 5 y + 9 z = 45 in the first octant; the density at a point PP on SS is equal to the square of the distance between PP and the xyx y -plane.

(Multiple Choice)
4.9/5
(32)

Find parametric equations for CC , if CC is the curve of intersection of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } and the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 oriented counterclockwise as viewed from above.

(Short Answer)
4.8/5
(31)

Find the exact mass of a thin wire in the shape of the helix x=2sin(t),y=2cos(t),z=3t,0t2πx = 2 \sin ( t ) , y = 2 \cos ( t ) , z = 3 t , 0 \leq t \leq 2 \pi if the density is 5 .

(Multiple Choice)
4.9/5
(41)

Find a parametric representation for the part of the elliptic paraboloid x+y2+10z2=5x + y ^ { 2 } + 10 z ^ { 2 } = 5 that lies in front of the plane x=0x = 0 .

(Multiple Choice)
4.9/5
(48)

Find the correct identity, if ff is a scalar field, F\mathbf { F } and G\mathbf { G } are vector fields.

(Multiple Choice)
4.9/5
(43)
Showing 41 - 59 of 59
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)