Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } \text {, } where F(x,y)=(xy)i+(xy)j\mathbf { F } ( x , y ) = ( x - y ) \mathbf { i } + ( x y ) \mathbf { j } and CC is the arc of the circle x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 traversed counterclockwise from (4,0)( 4,0 ) to (0,4)( 0 , - 4 ) . Round your answer to two decimal places.

(Multiple Choice)
4.9/5
(40)

Find the area of the surface SS where SS is the part of the sphere x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 that lies to the right of the xzx z -plane and inside the cylinder x2+z2=4x ^ { 2 } + z ^ { 2 } = 4 .

(Short Answer)
4.8/5
(34)

Evaluate the line integral over the given curve CC . C(5x+4y)ds;C:r(t)=(t5)i+tj,0t3\int _ { C } ( 5 x + 4 y ) d s ; C : \mathbf { r } ( t ) = ( t - 5 ) \mathbf { i } + t \mathbf { j } , 0 \leq t \leq 3

(Multiple Choice)
4.8/5
(35)

A thin wire in the shape of a quarter-circle r(t)=6costi+6sintj,0tπ2\mathbf { r } ( t ) = 6 \cos t \mathbf { i } + 6 \sin t \mathbf { j } , 0 \leq t \leq \frac { \pi } { 2 } , has a linear mass density π(x,y)=2x+4y\pi ( x , y ) = 2 x + 4 y . Find the mass and the location of the center of mass of the wire.

(Short Answer)
4.9/5
(36)

Evaluate Cxy4dS\int _ { C } x y ^ { 4 } d S , where CC is the right half of the circle x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .

(Multiple Choice)
4.8/5
(31)

Find the exact mass of a thin wire in the shape of the helix x=2sin(t),y=2cos(t),z=3t,0t2πx = 2 \sin ( t ) , y = 2 \cos ( t ) , z = 3 t , 0 \leq t \leq 2 \pi if the density is 5 .

(Multiple Choice)
4.7/5
(42)

Find the gradient vector field of ff . f(x,y,z)=x2+2y2+4z2f ( x , y , z ) = \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 4 z ^ { 2 } }

(Multiple Choice)
4.8/5
(44)

Determine whether or not vector field is conservative. If it is conservative, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y,z)=5zyi+5xzj+5xyk\mathbf { F } ( x , y , z ) = 5 z y \mathbf { i } + 5 x z \mathbf { j } + 5 x y \mathbf { k }

(Short Answer)
4.7/5
(32)

A plane lamina with constant density ρ(x,y)=12\rho ( x , y ) = 12 occupies a region in the xyx y -plane bounded by a simple closed path CC . Its moments of inertia about the axes are Ix=ρ3Cy3dx and Iy=ρ3Cx3dyI _ { x } = - \frac { \rho } { 3 } \int _ { C } y ^ { 3 } d x \text { and } I _ { y } = \frac { \rho } { 3 } \int _ { C } x ^ { 3 } d y Find the moments of inertia about the axes, if CC is a rectangle with vertices (0,0),(4,0)( 0,0 ) , ( 4,0 ) , (4,5)( 4,5 ) and (0,5)( 0,5 ) .

(Multiple Choice)
4.8/5
(36)

Evaluate the line integral over the given curve CC . C(6x+2y2)ds;C:r(t)=(t6)i+tj,0t1\int _ { C } \left( 6 x + 2 y ^ { 2 } \right) d s ; C : \mathbf { r } ( t ) = ( t - 6 ) \mathbf { i } + t \mathbf { j } , 0 \leq t \leq 1

(Multiple Choice)
4.8/5
(38)

Assuming that S satisfies the conditions of the Divergence Theorem and the scalar functions and components of the vector fields have continuous second order partial derivatives, find s4andS\iint _ { s } 4 \mathbf { a } \cdot \mathbf { n } d S \text {, } where a is the constant vector.

(Multiple Choice)
4.9/5
(44)

Let r=xi+yj+zk\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and r=rr = | \mathbf { r } | . Find (r)\nabla \cdot ( \mathbf { r } ) .

(Multiple Choice)
4.8/5
(45)

Use Stokes' Theorem to evaluate CFdr\oint _ { C } \mathbf { F } \cdot d \mathbf { r } . F(x,y,z)=7cosxi+5eyj+2xyk\mathbf { F } ( x , y , z ) = 7 \cos x \mathbf { i } + 5 e ^ { y } \mathbf { j } + 2 x y \mathbf { k } CC is the curve obtained by intersecting the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 with the hyperbolic paraboloid z=x2y2z = x ^ { 2 } - y ^ { 2 } , oriented in a counterclockwise direction when viewed from above

(Multiple Choice)
4.8/5
(35)

A plane lamina with constant density ρ(x,y)=6\rho ( x , y ) = 6 occupies a region in the xyx y -plane bounded by a simple closed path CC . Its moments of inertia about the axes are Ix=ρ3Cy3dx and Iy=ρ3Cx3dyI _ { x } = - \frac { \rho } { 3 } \int _ { C } y ^ { 3 } d x \text { and } I _ { y } = \frac { \rho } { 3 } \int _ { C } x ^ { 3 } d y Find the moments of inertia about the axes, if CC is a rectangle with vertices (0,0),(4,0)( 0,0 ) , ( 4,0 ) , (4,5)( 4,5 ) and (0,5)( 0,5 ) .

(Multiple Choice)
4.9/5
(42)

____ Show that F\mathbf { F } is conservative and find a function ff such that F=f\mathbf { F } = \nabla f , and use this result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any path from A(x0,y0)A \left( x _ { 0 } , y _ { 0 } \right) to B(x1,y1)B \left( x _ { 1 } , y _ { 1 } \right) . F(x,y)=(15x2y214xy4)i+(10x3y28x2y3)j;A(1,2)\mathbf { F } ( x , y ) = \left( 15 x ^ { 2 } y ^ { 2 } - 14 x y ^ { 4 } \right) \mathbf { i } + \left( 10 x ^ { 3 } y - 28 x ^ { 2 } y ^ { 3 } \right) \mathbf { j } ; A ( 1 , - 2 ) and B(1,1)B ( 1 , - 1 )

(Multiple Choice)
4.7/5
(32)

Find the gradient vector field of the scalar function ff . (That is, find the conservative vector field F\mathbf { F } for the potential function ff of F\mathbf { F } .) f(x,y,z)=7xy2+2yz2f ( x , y , z ) = 7 x y ^ { 2 } + 2 y z ^ { 2 }

(Multiple Choice)
4.8/5
(38)

Use Green's Theorem and/or a computer algebra system to evaluate Cx2ydxxy2dy\int _ { C } x ^ { 2 } y d x - x y ^ { 2 } d y , where CC is the circle x2+y2=64x ^ { 2 } + y ^ { 2 } = 64 with counterclockwise orientation.

(Multiple Choice)
4.8/5
(43)

Determine whether or not vector field is conservative. If it is conservative, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y,z)=18xi+10yj+4zk\mathbf { F } ( x , y , z ) = 18 x \mathbf { i } + 10 y \mathbf { j } + 4 z \mathbf { k }

(Short Answer)
4.7/5
(28)

Find the curl of the vector field F. F(x,y,x)=7yz2i+4x5y5j+8xk\mathbf { F } ( x , y , x ) = 7 y z ^ { 2 } \mathbf { i } + 4 x ^ { 5 } y ^ { 5 } \mathbf { j } + 8 x \mathbf { k }

(Multiple Choice)
4.8/5
(37)

Which plot illustrates the vector field F(x,y,z)=k\mathbf { F } ( x , y , z ) = \mathbf { k } ?

(Multiple Choice)
4.8/5
(34)
Showing 21 - 40 of 59
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)