Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the curvature of the curve r(t)=3sin4ti+3cos4tj+3tk\mathbf { r } ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } .

(Multiple Choice)
4.9/5
(35)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=4sinti+4costj+3tk\mathbf { r } ( t ) = 4 \sin t \mathbf { i } + 4 \cos t \mathbf { j } + 3 t \mathbf { k }

(Multiple Choice)
4.9/5
(36)

 Find equations of the normal plane to x=t,y=t2,z=t3 at the point (2,4,8)\text { Find equations of the normal plane to } x = t , y = t ^ { 2 } , z = t ^ { 3 } \text { at the point } ( 2,4,8 ) \text {. }

(Short Answer)
4.8/5
(30)

The curves r1(t)=t,t3,t9\mathbf { r } _ { 1 } ( t ) = \left\langle t , t ^ { 3 } , t ^ { 9 } \right\rangle and r2(t)=sint,sin5t,t\mathbf { r } _ { 2 } ( t ) = \langle \sin t , \sin 5 t , t \rangle intersects at the origin. Find their angle of intersection correct to the nearest degree.

(Short Answer)
4.8/5
(29)

Find the derivative of the vector function. r(t)=a+tb+t2c\mathbf { r } ( t ) = a + t b + t ^ { 2 } c

(Short Answer)
4.9/5
(44)

Find the position vector of a particle that has the given acceleration and the given initial velocity and position. a(t)=4k,v(0)=i+j20k,r(0)=4i+9j\mathbf { a } ( t ) = - 4 \mathbf { k } , \mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { j } - 20 \mathbf { k } , \mathbf { r } ( 0 ) = 4 \mathbf { i } + 9 \mathbf { j }

(Short Answer)
4.8/5
(48)

The curvature of the curve given by the vector function rr is k(t)=rt(t)×rtt(t)rt(t)3\mathrm { k } ( t ) = \frac { \left| \mathbf { r } ^ { t } ( t ) \times \mathbf { r } ^ { tt } ( t ) \right| } { \left| \mathbf { r } ^ { t } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t)=(19t,et,et}\mathbf { r } ( t ) = \left( \sqrt { 19 } t , e ^ { t } , e ^ { - t } \right\} at the point (0,1,1)( 0,1,1 ) .

(Multiple Choice)
4.8/5
(29)

At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=4?3 x + 9 y - 4 z = 4 ?

(Multiple Choice)
4.7/5
(28)

Find the unit tangent and unit normal vectors T(t)\mathrm { T } ( t ) and N(t)\mathrm { N } ( t ) for the curve CC defined by r(t)=ti+2t2j\mathbf { r } ( t ) = t \mathbf { i } + 2 t ^ { 2 } \mathbf { j } . Sketch the graph of CC , and show T(t)\mathrm { T } ( t ) and N(t)\mathrm { N } ( t ) for t=1t = 1 .

(Essay)
4.9/5
(44)

Find the limit limt0[(t2+3)i+cos5tj6k]\lim _ { t \rightarrow 0 } \left[ \left( t ^ { 2 } + 3 \right) \mathbf { i } + \cos 5 t \mathbf { j } - 6 \mathbf { k } \right]

(Multiple Choice)
4.9/5
(30)

If r(t)=(t,t5,tı\mathbf { r } ( t ) = \left( t , t ^ { 5 } , t ^ { \imath } \right\rangle , find rtt(t)\mathbf { r } ^ { tt } ( t )

(Multiple Choice)
4.7/5
(34)

Find the domain of the vector function r(t)=8t,1t9,lnt\mathbf { r } ( t ) = \left\langle 8 \sqrt { t } , \frac { 1 } { t - 9 } , \ln t \right\rangle .

(Multiple Choice)
4.8/5
(33)

Use Simpson's Rule with n=4\mathrm { n } = 4 to estimate the length of the arc of the curve with equations x=t,y=4t,z=t2+1x = \sqrt { t } , y = \frac { 4 } { t } , z = t ^ { 2 } + 1 , from (1,4,2)( 1,4,2 ) to (2,1,17)( 2,1,17 ) . Round your answer to four decimal places.

(Multiple Choice)
4.9/5
(37)

 Find the integral (sin7ti+cos7tj+et/5k)dt\text { Find the integral } \int \left( \sin 7 t \mathbf { i } + \cos 7 t \mathbf { j } + e ^ { - t / 5 } \mathbf { k } \right) d t \text {. }

(Short Answer)
4.8/5
(34)

Find a vector function that represents the curve of intersection of the two surfaces: the top half of the ellipsoid x2+7y2+7z2=49x ^ { 2 } + 7 y ^ { 2 } + 7 z ^ { 2 } = 49 and the parabolic cylinder y=x2y = x ^ { 2 } .

(Multiple Choice)
4.8/5
(45)

Find parametric equations for the tangent line to the curve with parametric equations x=3tx = 3 t , y=5t2,z=4t3y = 5 t ^ { 2 } , z = 4 t ^ { 3 } at the point with t=1t = 1 .

(Multiple Choice)
4.9/5
(39)

Find r(t)\mathbf { r } ^ { \tt } ( t ) for the function given. r(t)=8i+sintj+costk\mathbf { r } ( t ) = 8 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

(Multiple Choice)
4.9/5
(37)

Find the integral (4ti+6t2j+4k)dt\int \left( 4 t \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 4 \mathbf { k } \right) d t .

(Multiple Choice)
5.0/5
(31)

Find the unit tangent vector for the curve given by r(t)=15t5,13t3,t\mathbf { r } ( t ) = \left\langle \frac { 1 } { 5 } t ^ { 5 } , \frac { 1 } { 3 } t ^ { 3 } , t \right\rangle .

(Multiple Choice)
4.8/5
(38)

The following table gives coordinates of a particle moving through space along a smooth curve. x y z 0.5 5.8 9.1 4.3 1 12.6 14.9 16.8 1.5 25.6 21.2 29.4 2 39.2 39.5 37.9 2.5 42.4 42.4 43 Find the average velocity over the time interval [1,2][ 1,2 ] .

(Multiple Choice)
4.9/5
(37)
Showing 21 - 40 of 58
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)