Exam 1: Functions and Models

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If ff and gg are continuous functions with f(9)=6f ( 9 ) = 6 and limx9[2f(x)g(x)]=9\lim _ { x \rightarrow 9 } [ 2 f ( x ) - g ( x ) ] = 9 , find g(9)g ( 9 ) .

(Multiple Choice)
4.8/5
(33)

Suppose the distance ss (in feet) covered by a car moving along a straight road after tt sec is given by the function s=f(t)=3t2+13ts = f ( t ) = 3 t ^ { 2 } + 13 t . Calculate the (instantaneous) velocity of the car when t=35t = 35 .

(Multiple Choice)
4.8/5
(34)

 If f and g are continuous functions with f(7)=10 and limx7[2f(x)g(x)]=7, find g(7)\text { If } f \text { and } g \text { are continuous functions with } f ( 7 ) = 10 \text { and } \lim _ { x \rightarrow 7 } [ 2 f ( x ) - g ( x ) ] = 7 , \text { find } g ( 7 ) \text {. }

(Short Answer)
4.9/5
(40)

If f(x)=x2x+6f ( x ) = x ^ { 2 } - x + 6 , evaluate the difference quotient f(a+h)f(a)h\frac { f ( a + h ) - f ( a ) } { h }

(Multiple Choice)
4.8/5
(36)

If 1f(x)x2+6x+61 \leq f ( x ) \leq x ^ { 2 } + 6 x + 6 , for all xx , find limx1f(x)\lim _ { x \rightarrow - 1 } f ( x )

(Multiple Choice)
4.9/5
(19)

Sketch the graph of the function ff and evaluate limx3f(x)\lim _ { x \rightarrow 3 } f ( x ) . f(x)={x4, if x32x+5, if x>3f ( x ) = \left\{ \begin{array} { l l } x - 4 , & \text { if } x \leq 3 \\- 2 x + 5 , & \text { if } x > 3\end{array} \right.

(Multiple Choice)
4.8/5
(38)

The following figure shows a portion of the graph of a function ff defined on the interval [1,1][ - 1,1 ] . Sketch the complete graph of ff if it is known ff is odd.  The following figure shows a portion of the graph of a function  f  defined on the interval  [ - 1,1 ] . Sketch the complete graph of  f  if it is known  f  is odd.

(Essay)
4.9/5
(31)

Find the domain. g(u)=u3ug ( u ) = \sqrt { u } - \sqrt { 3 - u }

(Short Answer)
4.9/5
(35)

Use the graph of f(x)=x2+x2x+2f ( x ) = \frac { x ^ { 2 } + x - 2 } { x + 2 } to guess at the limit limx2x2+x2x+2\lim _ { x \rightarrow - 2 } \frac { x ^ { 2 } + x - 2 } { x + 2 } , if it exists.  Use the graph of  f ( x ) = \frac { x ^ { 2 } + x - 2 } { x + 2 }  to guess at the limit  \lim _ { x \rightarrow - 2 } \frac { x ^ { 2 } + x - 2 } { x + 2 } , if it exists.

(Multiple Choice)
4.8/5
(30)

Find the limit. limtt2+3t3+t27\lim _ { t \rightarrow \infty } \frac { t ^ { 2 } + 3 } { t ^ { 3 } + t ^ { 2 } - 7 }

(Multiple Choice)
4.9/5
(42)

The displacement (in feet) of a certain particle moving in a straight line is given by s=t38s = \frac { t ^ { 3 } } { 8 } where tt is measured in seconds. Find the average velocity over the interval [1,1.19][ 1,1.19 ] . Round your answer to three decimal places.

(Multiple Choice)
4.8/5
(42)

Sketch the graph of y=1cosxy = - 1 - \cos x over one period.

(Multiple Choice)
4.8/5
(33)

Find the limit. limx24x2+13x2\lim _ { x \rightarrow 2 } \sqrt { \frac { 4 x ^ { 2 } + 1 } { 3 x - 2 } }

(Multiple Choice)
4.9/5
(29)

Evaluate the limit. limx1(x+5)3(x26)\lim _ { x \rightarrow 1 } ( x + 5 ) ^ { 3 } \left( x ^ { 2 } - 6 \right)

(Short Answer)
4.9/5
(40)

The graphs of f(x)f ( x ) and g(x)g ( x ) are given. a) For what values of xx is f(x)=g(x)f ( x ) = g ( x ) ? b) Find the values of f(2)f ( - 2 ) and g(4)g ( 4 ) .  The graphs of  f ( x )  and  g ( x )  are given. a) For what values of  x  is  f ( x ) = g ( x )  ? b) Find the values of  f ( - 2 )  and  g ( 4 ) .

(Short Answer)
4.9/5
(29)

For what value of the constant cc is the function ff continuous on (,)?( - \infty , \infty ) ? f(x)={cx+5 for x2cx25 for x>2f ( x ) = \left\{ \begin{array} { l l l } c x + 5 & \text { for } & x \leq 2 \\ c x ^ { 2 } - 5 & \text { for } & x > 2 \end{array} \right. Select the correct answer.

(Multiple Choice)
4.7/5
(26)

If a rock is thrown upward on the planet Mars with a velocity of 12 m/s12 \mathrm {~m} / \mathrm { s } , its height in meters tt seconds later is given by y=12t1.92t2y = 12 t - 1.92 t ^ { 2 } Find the average velocity over the time interval [2,3][ 2,3 ] .

(Multiple Choice)
4.8/5
(30)

The position of a car is given by the values in the following table. t (seconds) 0 1 2 3 4 s (meters) 0 21.9 25.8 69.2 92.2 Find the average velocity for the time period beginning when t=2t = 2 and lasting 2 seconds.

(Multiple Choice)
4.9/5
(33)

Find the numbers, if any, where the function f(x)={3x2 if x10 if x>1f ( x ) = \left\{ \begin{array} { c c } 3 x - 2 & \text { if } x \leq 1 \\ 0 & \text { if } x > 1 \end{array} \right. is discontinuous.

(Multiple Choice)
4.8/5
(32)

Find the limit. limx10xtan1(5x)\lim _ { x \rightarrow \frac { 10 } { x } } \tan ^ { - 1 } \left( \frac { 5 } { x } \right)

(Short Answer)
4.9/5
(33)
Showing 41 - 60 of 112
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)