Exam 1: Functions and Models

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

 Sketch the graph of the derivative f of the function f whose graph is given. \text { Sketch the graph of the derivative } f ^ { \prime } \text { of the function } f \text { whose graph is given. } \text { Sketch the graph of the derivative } f ^ { \prime } \text { of the function } f \text { whose graph is given. }

(Essay)
4.9/5
(33)

Use the graph of the function to state the value of limx0f(x)\lim _ { x \rightarrow 0 } f ( x ) , if it exists. f(x)=11+41/xf ( x ) = \frac { 1 } { 1 + 4 ^ { 1 / x } }

(Short Answer)
4.9/5
(33)

Evaluate the function f(x)=7(x2x2)f ( x ) = 7 \left( \frac { \sqrt { x } - \sqrt { 2 } } { x - 2 } \right) at the given numbers (correct to six decimal places). Use the results to guess the value of the limit limx2f(x)\lim _ { x \rightarrow 2 } f ( x ) . x f(x) 1.6 1.8 1.9 1.99 1.999 2.4 2.2 2.1 2.01 2.001 Limit

(Short Answer)
4.9/5
(41)

Consider the following function. f(x)={3xx<1x1x<3(x3)2x3f ( x ) = \left\{ \begin{array} { c c } 3 - x & x < - 1 \\x & - 1 \leq x < 3 \\( x - 3 ) ^ { 2 } & x \geq 3\end{array} \right. Determine the values of aa for which limxaf(x)\lim _ { x \rightarrow a } f ( x ) exists.

(Short Answer)
4.8/5
(37)

Let f(x)={x4 if x5kx224x+46 if x>5f ( x ) = \left\{ \begin{array} { c c } x - 4 & \text { if } x \leq 5 \\k x ^ { 2 } - 24 x + 46 & \text { if } x > 5\end{array} \right. Find the value of kk that will make ff continuous on (,)( - \infty , \infty ) .

(Multiple Choice)
4.8/5
(36)

You are given limxaf(x)=L\lim _ { x \rightarrow a } f ( x ) = L and a tolerance ε\varepsilon . Find a number δ\delta such that f(x)L<ε| f ( x ) - L | < \varepsilon whenever 0<xa<δ0 < | x - a | < \delta . limx34x=12;ε=0.01\lim _ { x \rightarrow 3 } 4 x = 12 ; \quad \varepsilon = 0.01

(Short Answer)
4.7/5
(28)

Find the limit. limx2x2+2x12x2\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } + 2 x - 12 } { x - 2 }

(Multiple Choice)
4.8/5
(37)

If ff and gg are continuous functions with f(9)=6f ( 9 ) = 6 and limx9[2f(x)g(x)]=9\lim _ { x \rightarrow 9 } [ 2 f ( x ) - g ( x ) ] = 9 , find g(9)g ( 9 ) .

(Multiple Choice)
4.8/5
(33)

Is there a number aa such that limx33x2+ax+a+3x2+x6\lim _ { x \rightarrow - 3 } \frac { 3 x ^ { 2 } + a x + a + 3 } { x ^ { 2 } + x - 6 } exists? If so, find the value of aa and the value of the limit.

(Short Answer)
4.8/5
(36)

Which of the given functions is discontinuous?

(Multiple Choice)
4.9/5
(37)

Find the numbers, if any, where the function f(x)={3x2 if x10 if x>1f ( x ) = \left\{ \begin{array} { c l } 3 x - 2 & \text { if } x \leq 1 \\ 0 & \text { if } x > 1 \end{array} \right. is discontinuous.

(Multiple Choice)
4.7/5
(36)

 Use the graph to determine where the function is discontinuous. \text { Use the graph to determine where the function is discontinuous. } \text { Use the graph to determine where the function is discontinuous. }

(Short Answer)
4.8/5
(32)

Differentiate. y=sinx3+cosxy = \frac { \sin x } { 3 + \cos x }

(Short Answer)
4.9/5
(33)

The point P(16,4)P ( 16,4 ) lies on the curve y=xy = \sqrt { x } . If is the point Q(x,x)Q ( x , \sqrt { x } ) , use your calculator to find the slope of the secant line PQP Q (correct to six decimal places) for the value x=3.89x = 3.89 .

(Multiple Choice)
4.9/5
(31)

 Let f(x)=x218x+75 and g(x)=x+7. Find (fg)(74)(gg)(74)\text { Let } f ( x ) = x ^ { 2 } - 18 x + 75 \text { and } g ( x ) = \sqrt { x + 7 } \text {. Find } ( f \circ g ) ( 74 ) ( g \circ g ) ( 74 ) \text {. }

(Short Answer)
4.9/5
(38)

The volume of a right circular cone of radius rr and height hh is V=π3r2hV = \frac { \pi } { 3 } r ^ { 2 } h . Suppose that the radius and height of the cone are changing with respect to time tt . a. Find a relationship between dVdt,drdt\frac { d V } { d t } , \frac { d r } { d t } , and dhdt\frac { d h } { d t } . b. At a certain instant of time, the radius and height of the cone are 12 in. and 13 in. and are increasing at the rate of 0.2in./sec0.2 \mathrm { in } . / \mathrm { sec } and 0.5in./sec0.5 \mathrm { in } . / \mathrm { sec } , respectively. How fast is the volume of the cone increasing?

(Short Answer)
4.8/5
(29)

 Use the graph of f(x)=x2+x2x+2 to guess at the limit limx2x2+x2x+2, if it exists. \text { Use the graph of } f ( x ) = \frac { x ^ { 2 } + x - 2 } { x + 2 } \text { to guess at the limit } \lim _ { x \rightarrow - 2 } \frac { x ^ { 2 } + x - 2 } { x + 2 } \text {, if it exists. } \text { Use the graph of } f ( x ) = \frac { x ^ { 2 } + x - 2 } { x + 2 } \text { to guess at the limit } \lim _ { x \rightarrow - 2 } \frac { x ^ { 2 } + x - 2 } { x + 2 } \text {, if it exists. }

(Short Answer)
4.8/5
(31)

Two curves are said to be orthogonal if their tangent lines are perpendicular at each point of intersection of the curves. Show that the curves of the given equations are orthogonal. y74x=π2,x=74cosyy - \frac { 7 } { 4 } x = \frac { \pi } { 2 } , \quad x = \frac { 7 } { 4 } \cos y  Two curves are said to be orthogonal if their tangent lines are perpendicular at each point of intersection of the curves. Show that the curves of the given equations are orthogonal.  y - \frac { 7 } { 4 } x = \frac { \pi } { 2 } , \quad x = \frac { 7 } { 4 } \cos y

(Short Answer)
4.8/5
(45)

Find the point at which the given function is discontinuous. f(x)={1x7,x77,x=7f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { x - 7 } , & x \neq 7 \\7 , & x = 7\end{array} \right.

(Short Answer)
4.9/5
(30)

Find the limit. limx10xtan1(5x)\lim _ { x \rightarrow \frac { 10 } { x } } \tan ^ { - 1 } \left( \frac { 5 } { x } \right)

(Short Answer)
4.9/5
(38)
Showing 21 - 40 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)