Exam 7: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the average value of the function f(x)f ( x ) in the interval [π,π][ - \pi , \pi ] . f(x)=sin6xcos5xf ( x ) = \sin ^ { 6 } x \cos ^ { 5 } x

(Short Answer)
4.8/5
(28)

The region {(x+y)x6,0yex/4}\left\{ ( x + y ) \mid x \geq - 6,0 \leq y \leq e ^ { - x / 4 } \right\} is represented below. Find the area of this region to two decimal places. Select the correct answer.  The region  \left\{ ( x + y ) \mid x \geq - 6,0 \leq y \leq e ^ { - x / 4 } \right\}  is represented below. Find the area of this region to two decimal places. Select the correct answer.

(Multiple Choice)
4.9/5
(37)

Evaluate the integral. 1dxxlnx\int _ { 1 } ^ { \infty } \frac { d x } { x \ln x }

(Short Answer)
4.8/5
(39)

Determine whether the integral converges or diverges. If it converges, find its value. 1dxx5lnx\int _ { 1 } ^ { \infty } \frac { d x } { x ^ { 5 } \ln x }

(Short Answer)
4.8/5
(29)

Evaluate the integral. 1+3ex1exdx\int \frac { 1 + 3 e ^ { x } } { 1 - e ^ { x } } d x

(Short Answer)
4.9/5
(32)

Evaluate the integral to six decimal places. 01x364x2dx\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { \sqrt { 64 - x ^ { 2 } } } d x

(Short Answer)
4.8/5
(33)

Find the integral. Select the correct answer. x2x+2x32x2+xdx\int \frac { x ^ { 2 } - x + 2 } { x ^ { 3 } - 2 x ^ { 2 } + x } d x

(Multiple Choice)
4.9/5
(40)

Use long division to evaluate the integral. 01x3+12x236x+1x2+4x12dx\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } + 12 x ^ { 2 } - 36 x + 1 } { x ^ { 2 } + 4 x - 12 } d x The choices are rounded to 3 decimal places.

(Multiple Choice)
4.8/5
(39)

 Find the area bounded by the curves y=3cosx and y=3cos2x between x=0 and x=π2\text { Find the area bounded by the curves } y = 3 \cos x \text { and } y = 3 \cos ^ { 2 } x \text { between } x = 0 \text { and } x = \frac { \pi } { 2 } \text {. }

(Short Answer)
4.8/5
(39)

Find the integral. Select the correct answer. tan2xsec6xdx\int \tan ^ { 2 } x \sec ^ { 6 } x d x

(Multiple Choice)
4.8/5
(30)

Evaluate the integral. 01/212xcosπxdx\int _ { 0 } ^ { 1 / 2 } 12 x \cos \pi x d x

(Short Answer)
4.8/5
(42)

Evaluate the integral using the indicated trigonometric substitution. x3x2+25dx;x=5tanθ\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } + 25 } } d x ; \quad x = 5 \tan \theta

(Multiple Choice)
4.8/5
(36)

Use the Table of Integrals to evaluate the integral. e8xsin4xdx\int e ^ { 8 x } \sin 4 x d x

(Short Answer)
4.8/5
(38)

Find the integral. xe3xdx\int x e ^ { 3 x } d x

(Short Answer)
4.8/5
(38)

A manufacturer of light bulbs wants to produce bulbs that last about 700 hours but, of course, some bulbs burn out faster than others. Let F(t)F ( t ) be the fraction of the company's bulbs that burn out before tt hours. F(t)F ( t ) lies between 0 and 1 . Let r(t)=F(t)r ( t ) = F ^ { \prime } ( t ) . What is the value of 0r(t)dt\int _ { 0 } ^ { \infty } r ( t ) d t ?

(Short Answer)
5.0/5
(38)

Find the integral. 3x27x2(x2+x+1)2dx\int \frac { 3 x ^ { 2 } - 7 x - 2 } { \left( x ^ { 2 } + x + 1 \right) ^ { 2 } } d x

(Short Answer)
4.9/5
(35)

Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 11x2+1dx;n=6\int _ { - 1 } ^ { 1 } \sqrt { x ^ { 2 } + 1 } d x ; \quad n = 6

(Multiple Choice)
4.9/5
(39)

Evaluate the integral. 6sin2x1+cos4xdx\int \frac { 6 \sin 2 x } { 1 + \cos ^ { 4 } x } d x

(Short Answer)
4.9/5
(36)

Find a bound on the error in approximating the integral 19lnx9\int _ { 1 } ^ { 9 } \ln x ^ { 9 } using (a) the Trapezoidal Rule and (b) Simpson's Rule with n=10n = 10 subintervals.

(Short Answer)
4.9/5
(34)

Evaluate the integral. 15xln(1+x)dx\int 15 x \ln ( 1 + x ) d x

(Short Answer)
4.8/5
(42)
Showing 121 - 140 of 160
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)