Exam 7: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the Table of Integrals to evaluate the integral to three decimal places. 351x24x21dx\int _ { 3 } ^ { 5 } \frac { 1 } { x ^ { 2 } \sqrt { 4 x ^ { 2 } - 1 } } d x

(Short Answer)
4.7/5
(40)

Evaluate the integral 6e3xexdx\int \frac { 6 } { e ^ { 3 x } - e ^ { x } } d x

(Short Answer)
4.9/5
(36)

Use long division to evaluate the integral. x2x+7dx\int \frac { x ^ { 2 } } { x + 7 } d x

(Short Answer)
4.9/5
(39)

Use a table of integrals to evaluate the integral. 6x+5x2dx\int \frac { \sqrt { 6 x + 5 } } { x ^ { 2 } } d x

(Multiple Choice)
5.0/5
(37)

Find a bound on the error in approximating the integral 19lnx9\int _ { 1 } ^ { 9 } \ln x ^ { 9 } using (a) the Trapezoidal Rule and (b) Simpson's Rule with n=10n = 10 subintervals.

(Short Answer)
4.9/5
(36)

Find the integral using an appropriate trigonometric substitution. x1x2dx\int x \sqrt { 1 - x ^ { 2 } } d x

(Short Answer)
4.7/5
(38)

Find the integral. 3x5x22x3dx\int \frac { 3 x - 5 } { x ^ { 2 } - 2 x - 3 } d x

(Multiple Choice)
4.7/5
(34)

Find the integral. cot2xcsc6xdx\int \cot ^ { 2 } x \csc ^ { 6 } x d x

(Short Answer)
4.9/5
(34)

Evaluate the integral using integration by parts with the indicated choices of uu and dvd v . 6θcosθdθ,u=6θ,dv=cosθdθ\int 6 \theta \cos \theta d \theta , u = 6 \theta , d v = \cos \theta d \theta

(Multiple Choice)
4.8/5
(42)

Find the integral. 3x5x22x3dx\int \frac { 3 x - 5 } { x ^ { 2 } - 2 x - 3 } d x

(Short Answer)
4.9/5
(38)

Evaluate the integral. 0π/2cos6xdx\int _ { 0 } ^ { \pi / 2 } \cos ^ { 6 } x d x

(Multiple Choice)
4.7/5
(32)

 Find the area bounded by the curves y=cosx and y=cos2x between x=0 and x=π2\text { Find the area bounded by the curves } y = \cos x \text { and } y = \cos ^ { 2 } x \text { between } x = 0 \text { and } x = \frac { \pi } { 2 } \text {. }

(Short Answer)
4.9/5
(39)

Use a table of integrals to evaluate the integral. x2+2xdx\int x \sqrt { 2 + 2 x } d x

(Multiple Choice)
4.8/5
(38)

Determine whether the improper integral converges or diverges, and if it converges, find its value. 2781x3dx\int _ { - 27 } ^ { 8 } \frac { 1 } { \sqrt [ 3 ] { x } } d x

(Multiple Choice)
4.8/5
(40)

Use a table of integrals to evaluate the integral. x2+2xdx\int x \sqrt { 2 + 2 x } d x

(Multiple Choice)
4.8/5
(37)

Use the Table of Integrals to evaluate the integral. x2x64dx\int \frac { x ^ { 2 } } { \sqrt { x ^ { 6 } - 4 } } d x

(Short Answer)
4.7/5
(29)

Determine whether the improper integral converges or diverges, and if it converges, find its value. 31x3dx\int _ { 3 } ^ { \infty } \frac { 1 } { x ^ { 3 } } d x

(Short Answer)
4.9/5
(38)

Evaluate the integral. Select the correct answer. 019xsinπxdx\int _ { 0 } ^ { 1 } 9 x \sin \pi x d x

(Multiple Choice)
4.8/5
(39)

Evaluate the integral. 4(x1x2+2x)dx\int 4 \left( \frac { x - 1 } { x ^ { 2 } + 2 x } \right) d x

(Multiple Choice)
4.8/5
(34)

The region {(x+y)x7,0yex/5}\left\{ ( x + y ) \mid x \geq - 7,0 \leq y \leq e ^ { - x / 5 } \right\} is represented below. Find the area of this region to two decimal places.  The region  \left\{ ( x + y ) \mid x \geq - 7,0 \leq y \leq e ^ { - x / 5 } \right\}  is represented below. Find the area of this region to two decimal places.

(Short Answer)
4.9/5
(39)
Showing 61 - 80 of 160
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)