Exam 2: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let f(x)={3x1x<10x=12xx>1f ( x ) = \left\{ \begin{array} { c c } 3 x - 1 & x < 1 \\0 & x = 1 \\\frac { 2 } { x } & x > 1\end{array} \right. Which of the following is true for limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) ?

(Multiple Choice)
4.9/5
(42)

Let f(x)=2x12x2+5x3f ( x ) = \frac { 2 x - 1 } { 2 x ^ { 2 } + 5 x - 3 } The set of all vertical asymptotes of ƒ is

(Multiple Choice)
4.9/5
(42)

Let f(x)={2x+13x<14x=1x21<x<7f ( x ) = \left\{ \begin{array} { c c } - 2 x + 1 & - 3 \leq x < - 1 \\4 & x = - 1 \\x - 2 & - 1 < x < 7\end{array} \right. . Which of the following is true for limx1f(x)\lim _ { x \rightarrow - 1 } f ( x ) ?

(Multiple Choice)
4.9/5
(35)

Which of the following is equal to limit limx1(ex1x21)\lim _ { x \rightarrow 1 } \left( \frac { e ^ { x } - 1 } { x ^ { 2 } - 1 } \right) ?

(Multiple Choice)
4.8/5
(34)

Let f(x)=x2+2x2x2+x6f ( x ) = \frac { x ^ { 2 } + 2 x } { 2 x ^ { 2 } + x - 6 } Which of the following is true for limx2f(x)\lim _ { x \rightarrow - 2 } f ( x ) ?

(Multiple Choice)
4.8/5
(25)

Which of the following is equal to limit limx0sin(5x)sin(3x)\lim _ { x \rightarrow 0 } \frac { \sin ( 5 x ) } { \sin ( 3 x ) } ?

(Multiple Choice)
4.9/5
(43)

Which of the following is equal to limit limx01cos2x5x\lim _ { x \rightarrow 0 } \frac { 1 - \cos ^ { 2 } x } { 5 x } ?

(Multiple Choice)
4.8/5
(35)

Let f(x)=3x2f ( x ) = \frac { 3 } { x ^ { 2 } } Which of the following is equal to limh0f(2+h)f(2)h\lim _ { h \rightarrow 0 } \frac { f ( - 2 + h ) - f ( - 2 ) } { h } ?

(Multiple Choice)
4.8/5
(35)

Consider limx12x=2\lim _ { x \rightarrow - 1 } 2 x = - 2 In order for 2x(2)<0.01| 2 x - ( - 2 ) | < 0.01 whenever 0<x+1<δ0 < | x + 1 | < \delta which of the following is true for the largest ??

(Multiple Choice)
4.9/5
(32)

Let f(x)={3x1<x<0x+40x<42x4<x7f ( x ) = \left\{ \begin{array} { c c } 3 x & - 1 < x < 0 \\x + 4 & 0 \leq x < 4 \\2 x & 4 < x \leq 7\end{array} \right. Which of the following is true for limx4f(x)\lim _ { x \rightarrow 4 } f ( x ) ?

(Multiple Choice)
4.9/5
(24)

The limit limx3x22x+1\lim _ { x \rightarrow \infty } \frac { 3 - x ^ { 2 } } { - 2 x + 1 } is

(Multiple Choice)
4.7/5
(35)

The limit limx42x2x29x+4\lim _ { x \rightarrow 4 ^ { - } } \frac { 2 x } { 2 x ^ { 2 } - 9 x + 4 } is

(Multiple Choice)
4.8/5
(35)

Let f(x)=x+1f ( x ) = \sqrt { x + 1 } Which of the following is true for limx1f(x)\lim _ { x \rightarrow - 1 ^ { - } } f ( x ) ?

(Multiple Choice)
4.9/5
(30)

Let f(x)={1xx<01+xx>0f ( x ) = \left\{ \begin{array} { l l } 1 - x & x < 0 \\1 + x & x > 0\end{array} \right. Then ƒ is continuous at 0 if ƒ(0) is defined as

(Multiple Choice)
4.8/5
(36)

Let f(x)=x+1x+1f ( x ) = \frac { \lfloor x + 1 \rfloor } { x + 1 } . The set of all vertical asymptotes of ƒ is

(Multiple Choice)
4.9/5
(30)

Let f(x)=4x2x+6f ( x ) = \frac { - 4 x ^ { 2 } } { x + 6 } The set of all horizontal asymptotes of ƒ is

(Multiple Choice)
4.8/5
(44)

Let f(x)={1xx21+xx>2f ( x ) = \left\{ \begin{array} { l l } 1 - x & x \leq 2 \\1 + x & x > 2\end{array} \right. Which of the following is true for limx2f(x)\lim _ { x \rightarrow 2 } f ( x ) ?

(Multiple Choice)
4.8/5
(37)

Let f(x)=x+1f ( x ) = \lfloor x \rfloor + 1 Which of the following is true for limx1f(x)\lim _ { x \rightarrow 1 ^ { - } } f ( x ) ?

(Multiple Choice)
4.8/5
(46)

Let f(x)=x29x3f ( x ) = \frac { x ^ { 2 } - 9 } { x - 3 } Which of the following is true for limx3f(x)\lim _ { x \rightarrow 3 } f ( x ) ?

(Multiple Choice)
4.7/5
(44)

Which of the following is true for the limit limx0(xe2xsinx)\lim _ { x \rightarrow 0 } \left( \frac { x e ^ { 2 x } } { \sin x } \right) ?

(Multiple Choice)
4.7/5
(43)
Showing 21 - 40 of 122
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)