Exam 2: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Which of the following is equal to limit limx02xsin(3x)\lim _ { x \rightarrow 0 ^ { - } } - \frac { 2 x } { \sin ( 3 x ) } ?

(Multiple Choice)
4.9/5
(30)

Let f(x)=x+33xf ( x ) = \frac { \sqrt { x + 3 } - \sqrt { 3 } } { x } Which of the following is true for limx0f(x)\lim _ { x \rightarrow 0 } f ( x ) ?

(Multiple Choice)
4.8/5
(34)

The limit limxπ2+secx\lim _ { x \rightarrow \frac { \pi } { 2 } ^ { + } } \sec x is

(Multiple Choice)
4.9/5
(43)

Let f(x)=xf ( x ) = \lfloor x \rfloor Which of the following is true?

(Multiple Choice)
4.9/5
(40)

Consider limxrsin(xπ)=0\lim _ { x \rightarrow r } \sin ( x - \pi ) = 0 In order for sin(xπ)0<0.01| \sin ( x - \pi ) - 0 | < 0.01 whenever 0<xπ<δ0 < | x - \pi | < \delta , which of the following is the largest ? of those listed for which this is true?

(Multiple Choice)
4.8/5
(39)

Consider limx5(x53)=4\lim _ { x \rightarrow - 5 } \left( \frac { x } { 5 } - 3 \right) = - 4 In order for (x53)(4)<0.01\left| \left( \frac { x } { 5 } - 3 \right) - ( - 4 ) \right| < 0.01 whenever 0<x(5)<δ0 < | x - ( - 5 ) | < \delta which of the following is true for the largest ?

(Multiple Choice)
4.8/5
(40)

The limit limx0+x22x3+x2\lim _ { x \rightarrow 0 ^ { + } } \frac { x ^ { 2 } - 2 } { x ^ { 3 } + x ^ { 2 } } is

(Multiple Choice)
4.8/5
(37)

Consider limx01e=1e\lim _ { x \rightarrow 0 } \frac { 1 } { e } = \frac { 1 } { e } In order for 1e1e<0.01\left| \frac { 1 } { e } - \frac { 1 } { e } \right| < 0.01 whenever 0<x0<δ0 < | x - 0 | < \delta which of the following is true for the largest ?

(Multiple Choice)
4.9/5
(31)

Consider limx7(2x75)=7\lim _ { x \rightarrow - 7 } \left( \frac { 2 x } { 7 } - 5 \right) = - 7 In order for (2x75)(7)<0.01\left| \left( \frac { 2 x } { 7 } - 5 \right) - ( - 7 ) \right| < 0.01 whenever 0<x(7)<δ0 < | x - ( - 7 ) | < \delta which of the following is true for the largest ?

(Multiple Choice)
4.9/5
(27)

Let f(x)={x2+23<x<03x=02x+40<x3f ( x ) = \left\{ \begin{array} { c c } - x ^ { 2 } + 2 & - 3 < x < 0 \\3 & x = 0 \\2 x + 4 & 0 < x \leq 3\end{array} \right. Which of the following is true for limx0f(x)\lim _ { x \rightarrow 0 } f ( x ) ?

(Multiple Choice)
4.9/5
(43)

Consider limx26=6\lim _ { x \rightarrow 2 } 6 = 6 In order for 66<0.01| 6 - 6 | < 0.01 whenever 0<x2<δ0 < | x - 2 | < \delta , which of the following is true for the largest ?

(Multiple Choice)
4.8/5
(33)

Let f(x)=xxf ( x ) = \frac { | x | } { x } Which of the following is true for limx0f(x)\lim _ { x \rightarrow 0 ^ { - } } f ( x ) ?

(Multiple Choice)
4.7/5
(39)

Let f(x)=x+1f ( x ) = \sqrt { x + 1 } Which of the following is true for limx1+f(x)\lim _ { x \rightarrow 1 ^ { + } } f ( x ) ?

(Multiple Choice)
4.7/5
(38)

Which of the following is true for the limit limx03x3+4sin(6x)5x\lim _ { x \rightarrow 0 } \frac { - 3 x ^ { 3 } + 4 \sin ( 6 x ) } { 5 x } ?

(Multiple Choice)
4.9/5
(33)

Let f(x)={x23x<03x0<x<32x53<x<10f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } & - 3 \leq x < 0 \\3 x & 0 < x < 3 \\2 x - 5 & 3 < x < 10\end{array} \right. Then ƒ is continuous at 0 if ƒ(0) is defined as

(Multiple Choice)
4.9/5
(33)

Let f(x)=xxf ( x ) = \frac { | x | } { x } Which of the following is true for limx0+f(x)\lim _ { x \rightarrow 0 ^ { + } } f ( x ) ?

(Multiple Choice)
4.8/5
(38)

The limit limx4xx25\lim _ { x \rightarrow - \infty } \frac { 4 - x } { x ^ { 2 } - 5 } is

(Multiple Choice)
4.9/5
(34)

Let f(x)=x38x24f ( x ) = \frac { x ^ { 3 } - 8 } { x ^ { 2 } - 4 } . Which of the following is true?

(Multiple Choice)
4.7/5
(35)

Let f(x)=secxf ( x ) = \sec x for x[0,2π]x \in [ 0,2 \pi ] The set of all vertical asymptotes of ƒ is

(Multiple Choice)
4.9/5
(26)

Use the Intermediate Value Theorem to approximate the point of intersection of the function g(x) = x3+1x2\frac { x ^ { 3 } + 1 } { x - 2 } and y = -1.9 in the interval (-3, 3).

(Multiple Choice)
4.7/5
(25)
Showing 61 - 80 of 122
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)