Exam 2: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let f(x)={2x2x<24x=2x+10x>2f ( x ) = \left\{ \begin{array} { c l } 2 x ^ { 2 } & x < - 2 \\4 & x = - 2 \\x + 10 & x > - 2\end{array} \right. Which of the following is true for limx2f(x)\lim _ { x \rightarrow - 2 } f ( x ) ?

(Multiple Choice)
4.8/5
(36)

The largest set on which f(x)=x+4x+4f ( x ) = \frac { x + 4 } { | x + 4 | } is continuous is

(Multiple Choice)
4.8/5
(40)

Which of the following is true for the limit limx01cos2x3x\lim _ { x \rightarrow 0 } \frac { 1 - \cos ^ { 2 } x } { 3 x }

(Multiple Choice)
4.8/5
(40)

Let f(x)=x2f ( x ) = x ^ { 2 } Which of the following is equal to limh0f(3+h)f(3)h\lim _ { h \rightarrow 0 } \frac { f ( 3 + h ) - f ( 3 ) } { h } ?

(Multiple Choice)
4.9/5
(40)

The largest set on which f(x)=x2+1f ( x ) = \sqrt { x ^ { 2 } + 1 } is continuous is

(Multiple Choice)
4.8/5
(35)

Let f(x)=x+1f ( x ) = \lfloor x \rfloor + 1 Which of the following is true for limx1+f(x)\lim _ { x \rightarrow 1 ^ { + } } f ( x ) ?

(Multiple Choice)
4.8/5
(36)

Let f(x)={3x1<x<0x+40x<42x4<x6f ( x ) = \left\{ \begin{array} { c c } 3 x & - 1 < x < 0 \\x + 4 & 0 \leq x < 4 \\2 x & 4 < x \leq 6\end{array} \right. Then ƒ is continuous at 4 if ƒ(4) is defined as

(Multiple Choice)
4.7/5
(34)

Let f(x)=32x+123+xf ( x ) = \frac { \frac { 3 } { 2 x } + \frac { 1 } { 2 } } { 3 + x } Which of the following is true for limx3f(x)\lim _ { x \rightarrow - 3 } f ( x ) ?

(Multiple Choice)
4.8/5
(28)

Which of the following is equal to limit limx0tan(2x)x\lim _ { x \rightarrow 0 } \frac { \tan ( 2 x ) } { x } ?

(Multiple Choice)
4.8/5
(36)

Which of the following is equal to limit limx01cos4x5x\lim _ { x \rightarrow 0 } \frac { 1 - \cos ^ { 4 } x } { 5 x } ?

(Multiple Choice)
4.9/5
(32)

Let f(x)=x+3f ( x ) = \lfloor x \rfloor + 3 Which of the following is true for limx0f(x)\lim _ { x \rightarrow 0 ^ { - } } f ( x ) ?

(Multiple Choice)
4.9/5
(44)

Let f(x)=2xx2+1f ( x ) = \frac { 2 x } { \sqrt { x ^ { 2 } + 1 } } The set of all horizontal asymptotes of ƒ is

(Multiple Choice)
5.0/5
(40)

Let f(x)=52x+5x10f ( x ) = \frac { 5 - \sqrt { 2 x + 5 } } { x - 10 } Which of the following is true for limx10f(x)\lim _ { x \rightarrow 10 } f ( x ) ?

(Multiple Choice)
4.9/5
(39)

Which of the following is equal to limit limx0cos2(3x)15x\lim _ { x \rightarrow 0 } \frac { \cos ^ { 2 } ( 3 x ) - 1 } { 5 x } ?

(Multiple Choice)
4.9/5
(36)

Let f(x)=65x352xf ( x ) = \frac { \frac { 6 } { 5 x } - \frac { 3 } { 5 } } { 2 - x } Which of the following is true for limx2f(x)\lim _ { x \rightarrow 2 } f ( x ) ?

(Multiple Choice)
4.9/5
(33)

Let f(x)={2x2x<24x=2x+10x>2f ( x ) = \left\{ \begin{array} { c l } 2 x ^ { 2 } & x < - 2 \\4 & x = - 2 \\x + 10 & x > - 2\end{array} \right. Then ƒ is continuous at -2 if ƒ(-2) is redefined as

(Multiple Choice)
4.8/5
(28)

The largest set on which f(x)=x+4f ( x ) = \sqrt { x + 4 } is continuous is

(Multiple Choice)
4.9/5
(34)

 Let f(x)=x3+1x22x3\text { Let } f ( x ) = \frac { x ^ { 3 } + 1 } { x ^ { 2 } - 2 x - 3 } Which of the following is true?

(Multiple Choice)
4.9/5
(35)

Consider limx3(x+1)=4\lim _ { x \rightarrow - 3 } ( | x | + 1 ) = 4 In order for (x+1)4<0.01| ( | x | + 1 ) - 4 | < 0.01 whenever 0<x(3)<δ0 < | x - ( - 3 ) | < \delta which of the following is true for the largest ?

(Multiple Choice)
4.7/5
(32)

Let f(x)=xxf ( x ) = \frac { | x | } { x } The set of all vertical asymptotes of ƒ is

(Multiple Choice)
5.0/5
(32)
Showing 41 - 60 of 122
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)