Exam 2: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The limit limx1+x+1x+1\lim _ { x \rightarrow 1 ^ { + } } \frac { \lfloor x \rfloor + 1 } { x + 1 } is

(Multiple Choice)
4.8/5
(33)

The limit limxx2+1x+1\lim _ { x \rightarrow - \infty } \frac { \sqrt { x ^ { 2 } + 1 } } { x + 1 } is

(Multiple Choice)
4.7/5
(34)

Let f(x)=3x+121xf ( x ) = \frac { \sqrt { 3 x + 1 } - 2 } { 1 - x } Which of the following is true for limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) ?

(Multiple Choice)
4.9/5
(37)

The limit limx3+x3x3\lim _ { x \rightarrow 3 ^ { + } } \frac { \lfloor x \rfloor - 3 } { x - 3 } is

(Multiple Choice)
4.8/5
(42)

Let f(x)=3x25f ( x ) = 3 x ^ { 2 } - 5 Which of the following is equal to limh0f(1+h)f(1)h\lim _ { h \rightarrow 0 } \frac { f ( 1 + h ) - f ( 1 ) } { h } ?

(Multiple Choice)
4.7/5
(36)

Consider limx3(x41)=1\lim _ { x \rightarrow 3 } \left( \frac { x } { 4 } - 1 \right) = 1 In order for (x41)1<0.01\left| \left( \frac { x } { 4 } - 1 \right) - 1 \right| < 0.01 whenever 0<x8<δ0 < | x - 8 | < \delta which of the following is true for the largest ?

(Multiple Choice)
4.8/5
(33)

Let f(x)=x23x42x2x3f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 2 x ^ { 2 } - x - 3 } Which of the following is true for limx1f(x)\lim _ { x \rightarrow - 1 } f ( x ) ?

(Multiple Choice)
4.8/5
(36)

The largest set on which f(x)=x+1x21f ( x ) = \frac { x + 1 } { x ^ { 2 } - 1 } is continuous is

(Multiple Choice)
4.9/5
(34)

The limit is limx1x2+2x3x1\lim _ { x \rightarrow 1 } \frac { x ^ { 2 } + 2 x - 3 } { x - 1 } ?

(Multiple Choice)
4.9/5
(25)

The largest set on which f(x)=5x+35x2+3f ( x ) = \frac { 5 x + 3 } { 5 x ^ { 2 } + 3 } is continuous is

(Multiple Choice)
4.8/5
(32)

Consider limx4(x23)=1\lim _ { x \rightarrow 4 } \left( \frac { | x | } { 2 } - 3 \right) = - 1 In order for (x23)(1)<0.01\left| \left( \frac { | x | } { 2 } - 3 \right) - ( - 1 ) \right| < 0.01 whenever 0<x4<δ0 < | x - 4 | <\delta , which of the following is true for the largest ?

(Multiple Choice)
4.9/5
(36)

The limit limx0ln(ex1)\lim _ { x \rightarrow 0 ^ { - } } \ln \left( e ^ { x } - 1 \right) is

(Multiple Choice)
4.8/5
(35)

Let f(x)=4x2x2+xf ( x ) = \frac { \sqrt { 4 - x } - 2 } { x ^ { 2 } + x } Which of the following is true?

(Multiple Choice)
4.9/5
(28)

Let f(x)=2x3f ( x ) = 2 \lfloor x \rfloor - 3 Which of the following is true for limx1+f(x)\lim _ { x \rightarrow 1 ^ { + } } f ( x ) ?

(Multiple Choice)
4.8/5
(31)

Let f(x)=3x+411+xf ( x ) = \frac { \frac { 3 } { x + 4 } - 1 } { 1 + x } Which of the following is true for limx1f(x)\lim _ { x \rightarrow - 1 } f ( x ) ?

(Multiple Choice)
4.8/5
(34)

The limit limx2x2x2\lim _ { x \rightarrow 2 ^ { - } } \frac { \lfloor x \rfloor - 2 } { x - 2 } is

(Multiple Choice)
4.8/5
(37)

The limit limxx2+1x+1\lim _ { x \rightarrow - \infty } \frac { \sqrt { x ^ { 2 } + 1 } } { x + 1 } is

(Multiple Choice)
4.8/5
(28)

Let f(x)={x2+5xx<10x=1x3x>1f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 5 x & x < - 1 \\0 & x = - 1 \\x - 3 & x > - 1\end{array} \right. Then ƒ is continuous at -1 if ƒ(-1) is redefined as

(Multiple Choice)
4.8/5
(23)

Use the Intermediate Value Theorem to approximate the point of intersection of the function g(x) = x4- 2x and y = 1 in the interval (-1, 0). ​

(Multiple Choice)
4.8/5
(36)

Consider limx2(2x+6)=2\lim _ { x \rightarrow - 2 } ( 2 x + 6 ) = 2 In order for (2x+6)2<0.01| ( 2 x + 6 ) - 2 | < 0.01 whenever 0<x+2<δ0 < | x + 2 | < \delta , which of the following is true for the largest ??

(Multiple Choice)
4.8/5
(36)
Showing 101 - 120 of 122
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)