Exam 11: Orthogonal Functions and Fourier Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The function f(x)={x if x<02x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 - x & \text { if } x > 0\end{array} \right\} is Select all that apply.

Free
(Multiple Choice)
4.7/5
(28)
Correct Answer:
Verified

C, E

The function f(x)={x if x<02+5x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 + 5 x & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=1x = 1 to

Free
(Multiple Choice)
4.9/5
(28)
Correct Answer:
Verified

A

The Fourier series of the function f(x)={x if x<02x if x>0}f ( x ) = \left\{ \begin{aligned}x & \text { if } x < 0 \\2 - x & \text { if } x > 0\end{aligned} \right\} on [2,2][ - 2,2 ] are Select all that apply.

Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
Verified

C

The square norm of the function f(x)=sinxf ( x ) = \sin x on the interval [0,π][ 0 , \pi ] is

(Multiple Choice)
4.7/5
(28)

The solution of the eigenvalue problem y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 is

(Multiple Choice)
5.0/5
(41)

The solution of the eigenvalue problem rR+R+rλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded, R(3)=0R ^ { \prime } ( 3 ) = 0 is (J0t(zn)=0)\left( J _ { 0 } ^ { t } \left( z _ { n } \right) = 0 \right)

(Multiple Choice)
4.8/5
(28)

The solution of the eigenvalue problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0 is

(Multiple Choice)
4.9/5
(37)

The Fourier series of the function f(x)=xf ( x ) = | x | on [2,2][ - 2,2 ] is Select all that apply.

(Multiple Choice)
4.8/5
(35)

The function f(x)={0 if x<01 if x>0}f ( x ) = \left\{ \begin{array} { l l } 0 & \text { if } x < 0 \\1 & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=0x = 0 to

(Multiple Choice)
4.8/5
(37)

The Fourier series of an even function might Select all that apply.

(Multiple Choice)
4.9/5
(33)

The solution of the eigenvalue problem y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime } ( \pi ) = 0 is

(Multiple Choice)
4.9/5
(32)

The Fourier coeficients of the function f(x)=x2f ( x ) = x ^ { 2 } on [1,1][ - 1,1 ] are Select all that apply.

(Multiple Choice)
5.0/5
(27)

In order to be assured by a theorem that the Fourier Series of ff on [a,b][ a , b ] converges to ff , which of the following conditions need to be satisfied? Select all that apply.

(Multiple Choice)
4.8/5
(30)

The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is a regular Sturm-Liouville problem under certain conditions, including Select all that apply.

(Multiple Choice)
4.7/5
(34)

The function f(x)={0 if x<01 if x>0}f ( x ) = \left\{ \begin{array} { l l } 0 & \text { if } x < 0 \\1 & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=1x = 1 to

(Multiple Choice)
4.9/5
(38)

The Fourier Series of a function f(x)=xf ( x ) = x defined on [1,1][ - 1,1 ] is f(x)=a0/2+n1(ancos(nπx)+bnsin(nπx))f ( x ) = a _ { 0 } / 2 + \sum _ { n - 1 } ^ { \infty } \left( a _ { n } \cos ( n \pi x ) + b _ { n } \sin ( n \pi x ) \right) where Select all that apply.

(Multiple Choice)
4.9/5
(28)

The function f(x)={x if x<02+5x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 + 5 x & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=0x = 0 to

(Multiple Choice)
5.0/5
(32)

The Fourier coeficients of the function f(x)=xf ( x ) = x on [1,1][ - 1,1 ] are

(Multiple Choice)
4.7/5
(34)

The Fourier Series of a function ff defined on [p,p][ - p , p ] is f(x)=a0/2+n1(ancos(nπx/p)+bnsin(nπx/p))f ( x ) = a _ { 0 } / 2 + \sum _ { n - 1 } ^ { \infty } \left( a _ { n } \cos ( n \pi x / p ) + b _ { n } \sin ( n \pi x / p ) \right) where Select all that apply.

(Multiple Choice)
4.8/5
(40)

Which of the following differential equations are in self-adjoint form? Select all that apply.

(Multiple Choice)
4.8/5
(35)
Showing 1 - 20 of 40
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)