Exam 8: Systems of Linear First-Order Differential Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let A=(0110)A = \left( \begin{array} { c c } 0 & 1 \\- 1 & 0\end{array} \right) . Then eAt=e ^ { A t } =

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
Verified

A

The characteristic equation of A=(3111)A = \left( \begin{array} { c c } - 3 & - 1 \\1 & - 1\end{array} \right) is

Free
(Multiple Choice)
4.8/5
(42)
Correct Answer:
Verified

B

The Wronskian of the vector functions X1=(11)e2tX _ { 1 } = \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - 2 t } and X2=(35)e6tX _ { 2 } = \left( \begin{array} { l } 3 \\5\end{array} \right) e ^ { 6 t } is

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

A

The particular solution of X=(2321)X+(et0)\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 3 \\2 & 1\end{array} \right) \mathbf { X } + \left( \begin{array} { c } e ^ { - t } \\0\end{array} \right) is

(Multiple Choice)
4.9/5
(29)

If X1X _ { 1 } and X2X _ { 2 } are solutions of the second order system X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } and Xp\mathrm { X } _ { p } is a particular solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) , then the general solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) is

(Multiple Choice)
4.8/5
(41)

The characteristic equation of A=(2222)A = \left( \begin{array} { c c } 2 & - 2 \\2 & 2\end{array} \right) is

(Multiple Choice)
5.0/5
(41)

The characteristic equation of A=(11214123112)A = \left( \begin{array} { c c c } 1 & - 12 & - 14 \\1 & 2 & - 3 \\1 & 1 & - 2\end{array} \right) is

(Multiple Choice)
4.9/5
(38)

Let A=(012004000)A = \left( \begin{array} { l l l } 0 & 1 & 2 \\0 & 0 & 4 \\0 & 0 & 0\end{array} \right) . Then eAt=e ^ { A t } =

(Multiple Choice)
4.8/5
(32)

The Wronskian of the vector functions X1=(123)et,X2=(103)e2t\mathbf { X } _ { 1 } = \left( \begin{array} { l } 1 \\2 \\3\end{array} \right) e ^ { t } , \mathbf { X } _ { 2 } = \left( \begin{array} { c } - 1 \\0 \\3\end{array} \right) e ^ { - 2 t } and X3=(221)e4t\mathbf { X } _ { 3 } = \left( \begin{array} { l } 2 \\2 \\1\end{array} \right) e ^ { 4 t } is

(Multiple Choice)
4.9/5
(40)

The eigenvalues of A=(3511)A = \left( \begin{array} { c c } - 3 & - 5 \\1 & - 1\end{array} \right) is

(Multiple Choice)
4.9/5
(36)

The characteristic equation of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

(Multiple Choice)
4.9/5
(35)

A particular solution of X=(0110)X+(1et)\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 0 & 1 \\- 1 & 0\end{array} \right) \mathbf { X } + \left( \begin{array} { c } 1 \\e ^ { t }\end{array} \right) is

(Multiple Choice)
4.9/5
(37)

The eigenvalues of A=(2222)A = \left( \begin{array} { c c } 2 & - 2 \\2 & 2\end{array} \right) is

(Multiple Choice)
4.9/5
(26)

The solution of the system X=(3111)XX ^ { \prime } = \left( \begin{array} { c c } - 3 & - 1 \\1 & - 1\end{array} \right) X is

(Multiple Choice)
4.8/5
(26)

The eigenvalues of the matrix A of the previous problem are

(Multiple Choice)
4.9/5
(45)

If X1,X2,\mathrm { X } _ { 1 } , \mathrm { X } _ { 2 }, and X3X _ { 3 } are solutions of the third order system X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } and Xp\mathrm { X } _ { p } is a particular solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) , then the general solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) is

(Multiple Choice)
4.8/5
(39)

The general solution of X=(2321)X+(t1)\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 3 \\2 & 1\end{array} \right) \mathbf { X } + \left( \begin{array} { l } t \\1\end{array} \right) is

(Multiple Choice)
4.8/5
(35)

The solution of the previous problem that satisfies the initial condition X(0)=(00)X ( 0 ) = \left( \begin{array} { l } 0 \\0\end{array} \right) is

(Multiple Choice)
4.8/5
(31)

The solution of the system X=(2211)X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) \mathbf { X } is

(Multiple Choice)
4.8/5
(35)

Let A be the matrix of the previous two problems. The solution of X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } is

(Multiple Choice)
4.9/5
(30)
Showing 1 - 20 of 40
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)