Exam 9: Numerical Solutions of Ordinary Differential Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The solution of y=x+y,y(0)=1 for y(0.2)y ^ { \prime } = x + y , y ( 0 ) = 1 \text { for } y ( 0.2 ) , using Euler's method with h=0.1h = 0.1 is

(Multiple Choice)
4.8/5
(39)

The Euler's method solution for y(0.2)y ( 0.2 ) of y+y=0,y(0)=1y ^ { \prime \prime } + y = 0 , y ^ { \prime } ( 0 ) = 1 using h=0.1h = 0.1 is

(Multiple Choice)
4.8/5
(39)

The solution of y=y,y(0)=1 for y(0.2)y ^ { \prime } = y , y ( 0 ) = 1 \text { for } y ( 0.2 ) , using the improved Euler's method with h=0.1h = 0.1 is

(Multiple Choice)
4.8/5
(40)

Using the method from the previous two problems, using the values y0=1,y1=1.1052,y2=1.2214,y3=1.3499y _ { 0 } = 1 , y _ { 1 } = 1.1052 , y _ { 2 } = 1.2214 , y _ { 3 } = 1.3499 the solution of y=y,y(0)=1 for y(0.4)y ^ { \prime } = y , y ( 0 ) = 1 \text { for } y ( 0.4 ) with h=0.1h = 0.1 is

(Multiple Choice)
4.9/5
(33)

The solution of y=y,y(0)=1 for y(0.2)y ^ { \prime } = y , y ( 0 ) = 1 \text { for } y ( 0.2 ) , using Euler's method with h=0.1h = 0.1 is

(Multiple Choice)
4.8/5
(40)

Using the method from the previous problem, the solution of y=y,y(0)=1 for y(0.2)y ^ { \prime } = y , y ( 0 ) = 1 \text { for } y ( 0.2 ) with h=0.2h = 0.2 is

(Multiple Choice)
4.8/5
(34)

The standard backward difference approximation of y(x)y ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(30)

In the previous problem, the local truncation error in yn+1y _ { n + 1 } is

(Multiple Choice)
4.9/5
(45)

The Adams-Bashforth formula for finding the solution of yt=f(x,y),y(x0)=y0y ^ { t } = f ( x , y ) , y \left( x _ { 0 } \right) = y _ { 0 } is

(Multiple Choice)
4.7/5
(36)

The problem y+xyy=0,y(0)=0,y(0)=1y ^ { \prime \prime } + x y y ^ { \prime } = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 1 can be written as a system of two equations as follows.

(Multiple Choice)
4.8/5
(40)

Using the value of yn+1y _ { n + 1 } ^ { * } from the previous problem, the Adams-Moulton corrector value for the solution of yt=f(x,y),y(x0)=y0y ^ { t } = f ( x , y ) , y \left( x _ { 0 } \right) = y _ { 0 } is

(Multiple Choice)
4.9/5
(36)

The local truncation error for the improved Euler's method is

(Multiple Choice)
4.9/5
(38)

Using the method from the previous problem, the solution of y=x+y,y(0)=1 for y(0.2)y ^ { \prime } = x + y , y ( 0 ) = 1 \text { for } y ( 0.2 ) with h=0.2h = 0.2 is

(Multiple Choice)
4.8/5
(44)

When entering the number 1/71 / 7 into a three digit base ten calculator, the actual value entered is

(Multiple Choice)
4.8/5
(37)

Euler's formula for solving y=f(x,y),y(xˉ)=yˉy ^ { \prime } = f ( x , y ) , y ( \bar { x } ) = \bar { y } is

(Multiple Choice)
4.9/5
(40)

Using the notation from the text, the finite difference equation for solving the boundary value problem y+P(x)y+Q(x)y=f(x),y(a)=α,y(b)=βy ^ { \prime \prime } + P ( x ) y ^ { \prime } + Q ( x ) y = f ( x ) , y ( a ) = \alpha , y ( b ) = \beta is

(Multiple Choice)
4.8/5
(36)

The most popular fourth order Runge-Kutta method for the solution of yt=f(x,y),y(x0)=y0y ^ { t } = f ( x , y ) , y \left( x _ { 0 } \right) = y _ { 0 } is

(Multiple Choice)
4.9/5
(36)

The solution of y+xyy=0,y(0)=0,y(0)=1y ^ { \prime \prime } + x y y ^ { \prime } = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 1 for y(0.1)y ( 0.1 ) , using the Runge-Kutta method of order four, and using h=0.1h = 0.1 , is

(Multiple Choice)
5.0/5
(45)

Using the method from the previous problem, the solution of y=x+y,y(0)=1 for y(0.2)y ^ { \prime } = x + y , y ( 0 ) = 1 \text { for } y ( 0.2 ) with h=0.2h = 0.2 is

(Multiple Choice)
4.9/5
(40)

A popular second order Runge-Kutta method for the solution of yt=f(x,y),y(x0)=y0y ^ { t } = f ( x , y ) , y \left( x _ { 0 } \right) = y _ { 0 } is

(Multiple Choice)
4.8/5
(38)
Showing 21 - 40 of 40
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)