Exam 11: Work
Exam 1: Concepts of Motion52 Questions
Exam 2: Kinematics in One Dimension59 Questions
Exam 3: Vectors and Coordinate Systems33 Questions
Exam 4: Kinematics in Two Dimensions50 Questions
Exam 5: Force and Motion31 Questions
Exam 6: Dynamics I: Motion Along a Line46 Questions
Exam 7: Newtons Third Law43 Questions
Exam 8: Dynamics Ii: Motion in a Plane20 Questions
Exam 9: Impulse and Momentum20 Questions
Exam 10: Energy43 Questions
Exam 11: Work100 Questions
Exam 12: Rotation of a Rigid Body113 Questions
Exam 13: Newtons Theory of Gravity50 Questions
Exam 14: Oscillations49 Questions
Exam 15: Fluids and Elasticity72 Questions
Exam 16: A Macroscopic Description of Matter29 Questions
Exam 17: Work, Heat, and the First Law of Thermodynamics98 Questions
Exam 18: The Micromacro Connection39 Questions
Exam 19: Heat Engines and Refrigerators50 Questions
Exam 20: Traveling Waves49 Questions
Exam 21: Superpositions64 Questions
Exam 22: Wave Optics51 Questions
Exam 23: Ray Optics63 Questions
Exam 24: Optical Instruments49 Questions
Exam 25: Electric Charges and Forces26 Questions
Exam 26: The Electric Field32 Questions
Exam 27: Gausss Law41 Questions
Exam 28: The Electric Potential40 Questions
Exam 29: Potential and Field57 Questions
Exam 30: Current and Resistance32 Questions
Exam 31: Fundamentals of Circuits68 Questions
Exam 32: The Magnetic Field87 Questions
Exam 33: Electromagnetic Induction66 Questions
Exam 34: Electromagnetic Fields and Waves52 Questions
Exam 35: Ac Circuits46 Questions
Exam 36: Relativity49 Questions
Exam 37: The Foundations of Modern Physics8 Questions
Exam 38: Quantization54 Questions
Exam 39: Wave Functions and Uncertainty18 Questions
Exam 40: One-Dimensional Quantum Mechanics32 Questions
Exam 41: Atomic Physics39 Questions
Exam 42: Nuclear Physics65 Questions
Select questions type
A force on an object is given by F(x) = (2.00 N/m)x - (3.00 N/m3)x3. What is a potential energy function U(x) for this conservative force?
Free
(Essay)
4.8/5
(38)
Correct Answer:
U(x) = (-1.00 N/m)x2 + (0.750 N/m3)x4
Two boys searching for buried treasure are standing underneath the same tree. One boy walks 18 m east and then 18 m north. The other boy walks 16 m west and then 11 m north. Find the scalar product of their net displacements from the tree.
Free
(Short Answer)
4.8/5
(35)
Correct Answer:
-90 m2
A 5.00-kg object moves clockwise around a 50.0 cm radius circular path. At one location, the speed of the object is 4.00 m/s. When the object next returns to this same location, the speed is 3.00 m/s.
(a) How much work was done by nonconservative (dissipative) forces as the object moved once around the circle?
(b) If the magnitude of the above nonconservative (dissipative) forces acting on the object is constant, what is the value of this magnitude?
Free
(Essay)
4.8/5
(32)
Correct Answer:
(a) -17.5 J
(b) 5.57 N
Determine the angle between the directions of vector
= 3.00
+ 1.00
And vector
= -3.00
+ 3.00
.






(Multiple Choice)
4.9/5
(32)
An 0.80-kg block is held in place against the spring by a 67-N horizontal external force (see the figure). The external force is removed, and the block is projected with a velocity v1 = 1.2 m/s upon separation from the spring. The block descends a ramp and has a velocity v2 = 1.9 m/s at the bottom. The track is frictionless between points A and B. The block enters a rough section at B, extending to E. The coefficient of kinetic friction over this section is 0.39. The velocity of the block is v3 = 1.4 m/s at C. The block moves on to D, where it stops. The spring constant of the spring is closest to 

(Multiple Choice)
4.8/5
(41)
In the figure, a very small toy race car of mass m is released from rest on the loop-the-loop track. If it is released at a height 2R above the floor, how high is it above the floor when it leaves the track, neglecting friction? 

(Multiple Choice)
4.7/5
(31)
A 1500-kg car accelerates from 0 to 25 m/s in 7.0 s with negligible friction and air resistance. What is the average power delivered by the engine? (1 hp = 746 W)
(Multiple Choice)
4.9/5
(27)
An unusual spring has a restoring force of magnitude F = (2.00 N/m)x + (1.00 N/m2)x2, where x is the stretch of the spring from its equilibrium length. A 3.00-kg object is attached to this spring and released from rest after stretching the spring 1.50 m. If the object slides over a frictionless horizontal surface, how fast is it moving when the spring returns to its equilibrium length?
(Multiple Choice)
4.8/5
(40)
In the figure, two boxes, each of mass 24 kg, are at rest and connected as shown. The coefficient of kinetic friction between the inclined surface and the box is 0.31. Find the speed of the boxes just after they have moved 1.6 m. 

(Short Answer)
4.8/5
(30)
A girl throws a stone from a bridge. Consider the following ways she might throw the stone. The speed of the stone as it leaves her hand is the same in each case, and air resistance is negligible.
Case A: Thrown straight up.
Case B: Thrown straight down.
Case C: Thrown out at an angle of 45° above horizontal.
Case D: Thrown straight out horizontally.
In which case will the speed of the stone be greatest when it hits the water below?
(Multiple Choice)
4.9/5
(27)
When a particle is a distance r from the origin, its potential energy function is given by the equation U(r) = kr, where k is a constant and r =
(a) What are the SI units of k?
(b) Find a mathematical expression in terms of x, y, and z for the y component of the force on the particle.
(c) If U = 3.00 J when the particle is 2.00 m from the origin, find the numerical value of the y component of the force on this particle when it is at the point (-1.00 m, 2.00 m, 3.00 m).

(Essay)
4.8/5
(30)
A worker lifts a 20.0-kg bucket of concrete from the ground up to the top of a 20.0-m tall building. The bucket is initially at rest, but is traveling at 4.0 m/s when it reaches the top of the building. What is the minimum amount of work that the worker did in lifting the bucket?
(Multiple Choice)
4.8/5
(35)
The plot in the figure shows the potential energy of a particle, due to the force exerted on it by another particle, as a function of distance. At which of the three points labeled in the figure is the magnitude of the force on the particle greatest? 

(Multiple Choice)
4.7/5
(32)
A ball drops some distance and gains 30 J of kinetic energy. Do NOT ignore air resistance. How much gravitational potential energy did the ball lose?
(Multiple Choice)
4.8/5
(36)
An object is attached to a hanging unstretched ideal and massless spring and slowly lowered to its equilibrium position, a distance of 6.4 cm below the starting point. If instead of having been lowered slowly the object was dropped from rest, how far then would it then stretch the spring at maximum elongation?
(Multiple Choice)
4.7/5
(39)
A 1000 kg car experiences a net force of 9500 N while decelerating from 30.0 m/s to 23.4 m/s. How far does it travel while slowing down?
(Multiple Choice)
4.9/5
(39)
The value of the dot product of two vectors depends on the particular coordinate system being used.
(True/False)
4.9/5
(32)
A car on a roller coaster starts at zero speed at an elevation above the ground of 26 m. It coasts down a slope, and then climbs a hill. The top of the hill is at an elevation of 16 m. What is the speed of the car at the top of the hill? Neglect any frictional effects.
(Multiple Choice)
4.8/5
(39)
A force
= 12 N
- 10 N
Acts on an object. How much work does this force do as the object moves from the origin to the point 




(Multiple Choice)
4.9/5
(33)
An object is acted upon by a force that represented by the force vs. position graph in the figure. What is the work done as the object moves
(a) from 4 m to 6 m?
(b) from 6 m to 12 m? 

(Essay)
4.9/5
(41)
Showing 1 - 20 of 100
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)