Exam 38: Quantization
Exam 1: Concepts of Motion52 Questions
Exam 2: Kinematics in One Dimension59 Questions
Exam 3: Vectors and Coordinate Systems33 Questions
Exam 4: Kinematics in Two Dimensions50 Questions
Exam 5: Force and Motion30 Questions
Exam 6: Dynamics I: Motion Along a Line46 Questions
Exam 7: Newtons Third Law43 Questions
Exam 8: Dynamics Ii: Motion in a Plane20 Questions
Exam 9: Work and Kinetic Energy66 Questions
Exam 10: Interactions and Potential Energy55 Questions
Exam 11: Impulse and Momentum43 Questions
Exam 12: Rotation of a Rigid Body116 Questions
Exam 13: Newtons Theory of Gravity50 Questions
Exam 14: Fluids and Elasticity72 Questions
Exam 15: Oscillations49 Questions
Exam 16: Traveling Waves51 Questions
Exam 17: Superposition51 Questions
Exam 18: A Macroscopic Description of Matter46 Questions
Exam 19: Work, Heat, and the First Law of Thermodynamics96 Questions
Exam 20: The Micromacro Connection41 Questions
Exam 21: Heat Engines and Refrigerators44 Questions
Exam 22: Electric Charges and Forces26 Questions
Exam 23: The Electric Field32 Questions
Exam 24: Gausss Law41 Questions
Exam 25: The Electric Potential40 Questions
Exam 26: Potential and Field57 Questions
Exam 27: Current and Resistance32 Questions
Exam 28: Fundamentals of Circuits68 Questions
Exam 29: The Magnetic Field83 Questions
Exam 30: Electromagnetic Induction66 Questions
Exam 31: Electromagnetic Fields and Waves52 Questions
Exam 32: Ac Circuits44 Questions
Exam 33: Wave Optics51 Questions
Exam 34: Ray Optics60 Questions
Exam 35: Optical Instruments52 Questions
Exam 36: Relativity49 Questions
Exam 37: The Foundations of Modern Physics7 Questions
Exam 38: Quantization45 Questions
Exam 39: Wave Functions and Uncertainty18 Questions
Exam 40: One-Dimensional Quantum Mechanics32 Questions
Exam 41: Atomic Physics41 Questions
Exam 42: Nuclear Physics65 Questions
Select questions type
Monochromatic light strikes a metal surface and electrons are ejected from the metal. If the intensity of the light is increased, what will happen to the ejection rate and maximum energy of the electrons?
(Multiple Choice)
4.8/5
(37)
A nonrelativistic electron and a nonrelativistic proton have the same de Broglie wavelength. Which of the following statements about these particles are accurate? (There may be more than one correct choice.)
(Multiple Choice)
4.8/5
(30)
A beam of x-rays at a certain wavelength are scattered from a free electron at rest and the scattered beam is observed at 45.0° to the incident beam. What is the change in the wavelength of the X-rays? (mel = 9.11 × 10-31 kg, h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s)
(Multiple Choice)
4.8/5
(36)
What is the frequency of the light emitted by atomic hydrogen with m = 8 and n = 12? (The Rydberg constant is R = 1.097 × 107 m-1, c = 3.00 × 108 m/s.)
(Multiple Choice)
4.8/5
(41)
A stopping potential of 0.50 V is required when a phototube is illuminated with monochromatic light of wavelength 590 nm. Monochromatic light of a different wavelength is now shown on the tube, and the stopping potential is measured to be 2.30 V. What is the wavelength of this new light? (c = 3.00 × 108 m/s, e = -1.60 × 10-19 C, h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J)
(Multiple Choice)
4.8/5
(37)
Light shines through atomic hydrogen gas. It is seen that the gas absorbs light readily at a wavelength of 91.63 nm. What is the value of n of the level to which the hydrogen is being excited by the absorption of light of this wavelength? Assume that the most of the atoms in the gas are in the lowest level. (h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J, the Rydberg constant is R = 1.097 × 107 m-1.)
(Multiple Choice)
4.9/5
(38)
Light of wavelength 105 nm falls on a metal surface for which the work function is 5.00 eV. What is the minimum de Broglie wavelength of the photoelectrons emitted from this metal? (h = 6.626 × 10-34 J ∙ s = 4.14 × 10-15 eV ∙ s, c = 3.00 × 108 m/s, mel = 9.11 × 10-31 kg,
1 eV = 1.60 × 10-19 J)
(Multiple Choice)
4.7/5
(40)
A light beam from a 2.1-mW He-Ne laser has a wavelength of 633 nm. How many photons does the laser emit in one second? (h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s)
(Multiple Choice)
4.8/5
(38)
A hydrogen atom is excited to the n = 10 stated. It then decays to the n = 4 state by emitting a photon which is detected in a photographic plate. What is the frequency of the detected photon? The lowest level energy state of hydrogen is -13.6 eV. (h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J)
(Multiple Choice)
4.7/5
(41)
A metal having a work function of 2.5 eV is illuminated with white light that has a continuous wavelength band from 400 nm to 700 nm. For which one of the following ranges of the wavelength band in this white light are photoelectrons NOT produced? (h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J)
(Multiple Choice)
4.9/5
(35)
The energy of the ground state in the Bohr model of the hydrogen atom is -13.6 eV. The energy of the n = 2 state of hydrogen in this model is closest to
(Multiple Choice)
4.8/5
(35)
What is the energy of a photon that has a wavelength equal to the de Broglie wavelength of a proton having a speed of 7.1 ×
m/s? (mproton = 1.67 × 10-27 kg, c = 3.00 × 108 m/s)

(Multiple Choice)
4.8/5
(39)
When a certain metal is illuminated by light, photoelectrons are observed provided that the wavelength of the light is less than 669 nm. Which one of the following values is closest to the work function of this metal? (h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J)
(Multiple Choice)
4.8/5
(46)
Electrons emerge from an electron gun with a speed of 2.0 × 106 m/s and then pass through a pair of thin parallel slits. Interference fringes with a spacing of 2.7 mm are detected on a screen far from the double slit and fairly close to the center of the pattern. What would the fringe spacing be if the electrons were replaced by neutrons with the same speed? (mel = 9.11 × 10-31 kg, mneutron = 1.67 × 10-27 kg)
(Multiple Choice)
4.9/5
(30)
A photon of wavelength 18.0 pm is scattered through an angle of 120° by a stationary electron. What is the wavelength of the scattered photon? (mel = 9.11 × 10-31 kg, h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s)
(Multiple Choice)
4.9/5
(39)
In a double slit experiment, a beam of electrons strikes a pair of slits. The slits are 15 μm apart, and the first interference maximum lies at an angle of 0.50 µrad from the center of the interference pattern. What is the momentum of the incoming electrons? (h = 6.626 × 10-34 J ∙ s, mel = 9.11 × 10-31 kg)
(Multiple Choice)
4.9/5
(39)
A metal having a work function of 2.4 eV is illuminated with monochromatic light whose photon energy is 4.0 eV. What is the maximum kinetic energy of the photoelectrons produced by this light? 

(Multiple Choice)
4.8/5
(43)
When a metal surface is illuminated with light of wavelength 437 nm, the stopping potential for photoelectrons is 1.67 V. (c = 3.00 × 108 m/s, h = 6.626 × 10-34 J ∙ s, e = -1.60 × 10-19 C,
1 eV = 1.60 × 10-19 J, mel = 9.11 × 10-31 kg)
(a) What is the work function of the metal, in eV?
(b) What is the maximum speed of the ejected electrons?
(Essay)
4.8/5
(31)
Gamma rays are photons with very high energy. How many visible-light photons with a wavelength of 500 nm would you need to match the energy of a gamma-ray photon with energy 4.1 × 10-13 J? (h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s)
(Multiple Choice)
4.8/5
(38)
A nonrelativistic electron has a kinetic energy of 5.4 eV. What is the energy of a photon whose wavelength is the same as the de Broglie wavelength of the electron? (mel = 9.11 × 10-31 kg, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J)
(Multiple Choice)
4.8/5
(45)
Showing 21 - 40 of 45
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)