Exam 12: Limits and An Introduction To Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The limit of a function as x approaches c does not exist if the function approaches 5- 5 from the left of c and 4 from the right of

(True/False)
4.9/5
(33)

Find limx+12x1+3x\lim _ { x \rightarrow + \infty } \frac { 1 - 2 x } { 1 + 3 x } (if it exists).

(Multiple Choice)
4.9/5
(40)

Find the limit (if it exists). limx(32x14x+4)\lim _ { x \rightarrow \infty } \left( \frac { 32 x - 1 } { 4 x + 4 } \right)

(Multiple Choice)
4.9/5
(37)

Find the derivative of the function. h(s)=1s+2h ( s ) = \frac { 1 } { \sqrt { s + 2 } }

(Multiple Choice)
5.0/5
(34)

Use the limit process to find the slope of the graph of the function at the specified point.Use a graphing utility to confirm your result. h(x)=x,(4,2)h ( x ) = \sqrt { x },(4,2)

(Multiple Choice)
4.8/5
(37)

Select the correct function for the graph using horizontal asymptotes as aids. Select the correct function for the graph using horizontal asymptotes as aids.

(Multiple Choice)
4.9/5
(33)

Use the graph to determine the limit visually (if it exists).Then identify another function f2(x)that agrees with the given function at all but one point. f(x)=x21x+1f ( x ) = \frac { x ^ { 2 } - 1 } { x + 1 }  Use the graph to determine the limit visually (if it exists).Then identify another function f<sub>2</sub>(x)that agrees with the given function at all but one point.    f ( x ) = \frac { x ^ { 2 } - 1 } { x + 1 }         \lim _ { x \rightarrow 2 } f ( x ) = ?    limx2f(x)=?\lim _ { x \rightarrow 2 } f ( x ) = ?

(Multiple Choice)
4.7/5
(32)

Find the derivative of the function. f(x)=1x+13f ( x ) = \frac { 1 } { x + 13 }

(Multiple Choice)
4.9/5
(28)

Select the correct function for the graph using horizontal asymptotes as aids. Select the correct function for the graph using horizontal asymptotes as aids.

(Multiple Choice)
4.8/5
(29)

Determine limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) where f(x)={10x2,x17x,x>1f ( x ) = \left\{ \begin{array} { l } 10 - x ^ { 2 } , x \leq 1 \\7 - x , x > 1\end{array} \right. (if it exists)by evaluating the corresponding one-sided limits.

(Multiple Choice)
5.0/5
(30)

Evaluate the sum using the summation formula and property. i=130i2\sum _ { i = 1 } ^ { 30 } i ^ { 2 }

(Multiple Choice)
4.9/5
(39)

Find limx+[x(3+x)24]\lim _ { x \rightarrow + \infty } \left[ \frac { x } { ( 3 + x ) ^ { 2 } } - 4 \right] (if it exists).

(Multiple Choice)
4.9/5
(38)

Select the correct graph of the following function. f(x)=5x25x2+3f ( x ) = 5 x - \sqrt { 25 x ^ { 2 } + 3 }

(Multiple Choice)
4.9/5
(34)

Find the limit by direct substitution.Round your answer to two decimal places. limx1e3x\lim _ { x \rightarrow 1 } e ^ { 3 x }

(Multiple Choice)
4.8/5
(25)

Evaluate the sum using the summation formula and property. k=110(k3+9)\sum _ { k = 1 } ^ { 10 } \left( k ^ { 3 } + 9 \right)

(Multiple Choice)
4.8/5
(35)

Find the limit limx0sin3xx\lim _ { x \rightarrow 0 } \frac { \sin 3 x } { x }

(Multiple Choice)
4.8/5
(30)

Use the limit process to find the slope of the graph of the function at the specified point.Use a graphing utility to confirm your result. h(x)=5x+7,(1,2)h ( x ) = 5 x + 7 , \quad ( - 1,2 )

(Multiple Choice)
4.9/5
(34)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } . f(x)=5xf ( x ) = 5 \sqrt { x }

(Multiple Choice)
4.7/5
(31)

Find the limit by direct substitution. limx4(x1x2+8x+9)\lim _ { x \rightarrow 4 } \left( \frac { x - 1 } { x ^ { 2 } + 8 x + 9 } \right)

(Multiple Choice)
4.8/5
(29)

Use the limit process to find the slope of the graph of the function at the specified point.Use a graphing utility to confirm your result. g(x)=102x,(1,8)g ( x ) = 10 - 2 x , \quad ( 1,8 )

(Multiple Choice)
4.7/5
(31)
Showing 81 - 100 of 259
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)